
 

School of Computer Science

Second Year Undergraduate

06-30203

30203 LI Systems Programming in C and C++

Resit Examinations 2022

[Answer all questions]

1



Systems Programming in C and C++

Exam paper

Question 1

(a) The following data structure in C defines dynamically allocated matrix:

1 struct matrix˙t –

2 int * elems;

3 int n˙cols, n˙rows;

4 ˝;

Assume that the member elems points to a su�ciently large array to contain

n rows*n cols int elements. Consider a function that sets all elements with the

value val, implemented as follows:

5 void fill(struct matrix˙t * m, int val) –

6 for (int j = 0; j ¡ m-¿n˙cols; j++)

7 for (int i = 0; i ¡ m-¿n˙rows; i++)

8 set(m, i, j, val);

9 ˝

The function fill relies on a function set with the following signature:

void set(struct matrix˙t * m, int row, int col, int val);

Provide a C based implementation of the set function that sets the element at

coordinates row and col to value val and that makes fill be as cache e�cient as

possible. [6 marks]

(b) Show a valid memory layout and content on the stack for the variables a,b, and c

at the end of execution of the following C code:

1 char a = 10;

2 int b[4];

3 int * c = b;

4 while (c != b + 4)

5 *(c++) = a++;

6 printf(”%lu“n”, (unsigned long) b);

2

30203 LI Systems Programming in C and C++



Assume that the value printed on screen is 2000, that numbers are represented in

little endian, and that we are on a 64 bits machine. Each cell of the grid below corre-

sponds to one byte in memory, bytes are contiguous from left to right and continue

in the lower grid. Note that the cells available below are more than necessary, so it

is up to you to decide where to begin the sequence of bytes. For simplicity, write in

each cell the decimal representation of the respective byte.

low addresses

high addresses

[7 marks]

(c) Interpret the struct of point (a) as a C++ struct definition and consider the code

below (assume N ROWS and N COLS are some global integer positive constants)

1 void f(matrix˙t b) –

2 /* this modifies some elements of b */

3 ...

4 ˝

5

6 int main() –

7 matrix˙t a(N˙ROWS, N˙COLS);

8 f(a);

9 ˝

(i) Define a constructor with arguments int n rows, int n cols that allocates

an appropriate amount of memory. Also, define an appropriate destructor that

prevents the code above from leaking. [3 marks]

(ii) Define a copy constructor that ensures an appropriate pass-by-value to function

f, that is, b equals to a when entering f but modifications to b do not a↵ect a.

[2 marks]

(iii) Assuming that pass-by-value works as intended, describe how to modify the

code above so that changes to b directly apply to a. Briefly, justify your

answer. [2 marks]

3



Question 2

(a) You have a multi-threaded application that is running on a multicore system. You

have just added some code to implement mutual exclusion on some critical sections

of the code. Now the system behaves correctly but real-time performance is 50%

slower than before. Provide at least two reasons that are a↵ecting performance.

[5 marks]

(b) A computer lab is utilised to teach the Systems Programming module as well as

perform CPU-intensive operations in the background for research purposes. The

CPU was generally in use for nearly 100% of the time before updating the memory-

intensive IDE that is used for programming, and the response time was short. The

response time has increased greatly since the change, and throughput has decreased

significantly. Give a possible cause for this behaviour and a solution that doesn’t

require any additional hardware. [6 marks]

(c) The following device write function is part of a device driver implementation for a
character device which implements a simple way of message passing. The device

driver writes to the device to store the message in kernel space and adds it to

the list if the message is below the maximum size, and the limit of the size of

all messages wouldn’t be surpassed with this message. If the message is too big,

-EINVAL is returned, and if the limit of the size of all messages was surpassed,

-EAGAIN is returned. This kernel code compiles correctly, but does not work as

intended. Identify these errors and suggest remedies. If you think critical sections

are required, provide an implementation of the critical section. Briefly justify your

answer. [9 marks]

1 static ssize˙t device˙write(struct file * filp,

2 const char ˙˙user * buff, size˙t len, loff˙t * off) –

3 char * kernelBuffer;

4 struct msg˙t * msg;

5 printf(KERN˙INFO ”write %d“n”, (int) len);

6

7 if (len ¿ MSGSIZE) –

8 return -1;

9 ˝

10

11 // prepare new list element first

12 kernelBuffer = malloc(len, GFP˙KERNEL);

13 if (!kernelBuffer) –

14 return -ENOMEM;

15 ˝

16

17 msg = malloc(sizeof(struct msg˙t), GFP˙KERNEL);

4



18 if (!msg) –

19 kfree(kernelBuffer);

20 return -ENOMEM;

21 ˝

22

23 msg -¿ buf = kernelBuffer;

24 if (copy˙to˙user(msg -¿ buf, buff, len)) –

25 kfree(msg);

26 kfree(kernelBuffer);

27 return -EFAULT;

28 ˝

29 msg -¿ next = NULL;

30 msg -¿ size = len;

31

32 // add element to the list

33 if (len + overall˙size ¿ max˙size) –

34 kfree(msg);

35 kfree(kernelBuffer);

36 return -1;

37 ˝

38 msg -¿ next = messages;

39 messages = msg;

40 if (lastMsg == NULL) lastMsg = msg;

41 overall˙size = overall˙size + len;

42 return len;

43 ˝

Question 3

(a) Give three examples of when a context-switch between processes is performed. What

are the actions taken by a kernel during the context-switch? [4 marks]

(b) Consider three compute bound processes with 10, 6 and 4 units of burst time. Let us

assume that these processes arrive at 0, 2 and 6 units of time respectively. For the

Shortest Remaining Time First (SRTF), how many context switches are needed?

Do not consider the context switches at time 0 or at the end. [3 marks]

(c) The C program shown below is compiled and run on a UNIX machine. Modify

the program such that instead of the parent, the child process executes the execlp()

while the parent process waits for the child process to complete. Provide the updated

code. [3 marks]

5



1 #include ¡sys/types.h¿

2 #include ¡sys/wait.h¿

3 #include ¡stdio.h¿

4 #include ¡unistd.h¿

5 int main()

6 –

7 int pid;

8 /* fork a child process */

9 pid = fork();

10 if (pid ¡ 0) – /* error occurred */

11 fprintf(stderr, ”Fork Failed”);

12 return 1;

13 ˝else–

14 /* Parent Process */

15 execlp(”/bin/ls”,”ls”,NULL);

16 ˝

17 return 0;

18 ˝

(d) Consider a concurrent system with three processes A, B and C. The system receives

multiple requests, and places them in a request queue that is accessible by all the

three processes A, B, and C. For each request, we would like to enforce an order

such that the request must first be processed by A, then C, then A again and finally

B before it can be removed and discarded from the queue. A (semaphore based)

solution to synchronize A, B and C is given in (Table 1). Discuss whether the

proposed solution is correct. If not, then provide a deadlock free solution. [5 marks]

Table 1: A Semaphore based solution

Process A: Process B: Process C:

signal(a1done) wait(a1done) signal(cdone)

signal(a2done) wait(a2done)

(e) Consider a system with three frames of memory, and the following sequence of page

accesses: 1,2,3,4,1,2. When do page faults occur using FIFO, LRU and Optimal

Page replacement algorithms? Briefly justify your answer. [5 marks]

6




