Theories of Computation: Summative Assignment 2

To be handed in on Canvas before Thursday 31st March, 5pm GMT

Exercise 1 Let $\Sigma = \{a, b\}$ and $u, v \in \Sigma^+$, where Σ^+ is the set of nonempty words over Σ . We say that u is present in v if u can be obtained by deleting letters from v. For example, abbba is present in aabbababaa. We write |u| to denote the length of word u, i.e., the number of letters in u. For example, |abbba| = 5.

The goal of this exercise is to show that the following decision problem is in NP.

Input: $w_0 \# w_1 \# \dots \# w_k$ such that $w_i \in \Sigma^+$ for $0 \le i \le k$.

Problem: is there a word $x \in \Sigma^+$ such that $|x| = |w_0|$ and x is present in each w_i for $0 < i \le k$?

We will decompose the task into several steps.

1. Let us consider a two-tape deterministic Turing machine \mathcal{M}_1 on the input alphabet $I = \{a, b, \#\}$ with initial state 0, tape alphabet $T = \{a, b, \#, _\}$, return values $V = \{\texttt{True}, \texttt{False}\}$, and whose transition function is represented as the diagram in Figure 1 below.

Initially,

- the Main tape contains a non-empty block of as and bs (representing a word $w \in \Sigma^+$) in between a # on the left, on which the head is positioned, and a # or a $_$ on the right. (Outside of these #s and/or $_$ s there could be any symbol in T.)
- the Aux tape contains a non-empty block of as and bs (representing a word $x \in \Sigma^+$) and is otherwise blank, and the head is located on the $_$ immediately to the left.

For example,	Main	#	а	а	b	b	а	b	а	b	а	#
	Aux	J	L	•	а	b	b	b	а	L	J	J

In the case where the input block on the Main tape forms the word $w = a^n$ and the input block on the Aux tape forms the word $x = a^m$ for m, n > 0, how many steps does the machine \mathcal{M}_1 goes through until it returns a value in V? (Returning counts as a step.) [3 marks]

This is in fact the worst case complexity as a function of n = |w| and m = |x| and you can use this fact in the remainder of the exercise.

2. Design a two-tape nondeterministic Turing machine \mathcal{M}_2 that takes as an input a word $w \in \Sigma^+$ and can generate any word $x \in \Sigma^+$ that has the same length as w.

Formally, the start configuration is:

- the Main tape contains a nonempty block of as and bs (representing a word $w \in \Sigma^+$), with a $_$ to the left on which the head is placed and a # to the right, the rest of the tape is blank to the left and can contain any symbol in T beyond # on the right;
- the Aux tape is blank.

The machine M_2 should stop when reaching a configuration where:

Figure 1: Transition diagram for machine \mathcal{M}_1

- the Main tape is unchanged except for the head which should be placed on the # on the right
- the Aux tape contains an arbitrary block of as and bs (representing a word $x \in \Sigma^+$) of the same length as the input block on the Main tape and the head is on the first $_$ to the left.

Give the machine M_2 and briefly explain your solution. (Do not use more than 10 states.) [3 marks]

3. Using machines M_1 and M_2 as macros, design a two-tape nondeterministic Turing machine M_3 for the above decision problem.

This means that the machine should start with

• a block of as, bs and #s representing the input $w_0 # w_1 # ... # w_k$ on an otherwise blank Main tape with the head on the first $_$ to the left of w_0

• and a blank Aux tape.

The tape contents and head positions at the end do not matter.

Give the machine \mathcal{M}_3 and briefly explain your solution. (Do not use more than 5 states.) [

4. Explain briefly why the problem is in NP.

(*Note:* You may assume that any polytime two-tape nondeterministic Turing machine can be converted into a polytime one-tape nondeterministic machine with the same language. Just as we learnt in lectures for deterministic machines.)

Solution 1 *Note that these solutions are more detailed than was required.*

- 1. When $m \le n$, the machine takes 4m + 2n + 7 steps. When m > n, the machine takes 6n + 7 steps. Detailed explanation:
 - If $m \le n$: First, we go exactly m times through the (0-1-2-3-0) loop = 4m steps; until the last move right Aux gets us to $a _ = 2$ steps. At which point the auxiliary head is moved back to the $_$ to the left of the input block by going through it backwards via cycle (4-5-4) = 2m steps; until the last move left Aux gets us to $a _ = 2$ steps. Then, we finish reading up to the end of the block on the main tape via cycle (11-12-11) = 2(n-m) steps; before the last move right Main gets us to # or $_ = 2$ steps, and we return True = 1 step. Total: 4m + 2 + 2m + 2 + 2(n-m) + 2 + 1 = 4m + 2n + 7
 - If m > n: First, we go exactly n times through the (0-1-2-3-0) loop = 4n steps; until the last move right Main gets us to a _ or # = 4 steps. At which point the auxiliary head is simply moved back on the _ to the left of the input block by going through it backwards = 2n steps; before the last move left AUX gets us to a _ = 2 steps and we return False = 1 step. Total: 4n + 4 + 2n + 2 + 1 = 6n + 7

2.

[3 marks] [3 marks] The machine uses the input on the main tape as a counter, going through each character until it reaches a # or a $_$. For each character that it reads on the main tape, it chooses nondeterministically to write an a or a b on the auxiliary tape. When it reaches the end of the input block on the main tape, it 'rewinds' the head on the auxiliary tape to the $_$ beginning the generated block of characters.

3.

Input: $w_0 # w_1 # ... # w_k$ such that $w_i \in \Sigma^+$ for $0 \le i \le k$ on Main tape with head on the _ to the left. We start by running \mathcal{M}_2 on w_0 to generate a word x on the Aux tape (which is otherwise blank). When it stops, it leaves the head on the _ (if k = 0) or the # (if $k \ge 1$) following w_0 .

For i = 1 to k repeat (*)

We read the symbol under the head.

If it is \exists we return True. If it is # we run \mathcal{M}_1 on word w_i and x.

If it returns True, then we go back to (*).

If it returns False, then we return False as it means that x is not present in w_i .

4. Let us denote the size of the input by n which corresponds to $\sum_{0}^{k} |w_i| + (k-1)$ (when $k \ge 1$ or simply $|w_0|$ when k = 0).

Complexity of \mathcal{M}_2 : $5|w_0| + 2 + 2|w_0| + 1 \le 7n + 3$

Complexity of \mathcal{M}_1 : In the worst case we will repeat the loop (*) once for each word w_i for $1 \le i \le k$. That is, the total number of steps would be: $\sum_{i=1}^{k} (1+4|w_0|+2|w_i|+3) + 1 \le (k-1)(6n+4) \le 6n^2 + 4n$

Complexity of M_3 : $\leq 7n + 3 + 6n^2 + 4n + k$ (as we need to do the extra Read Main instruction k times) $\leq 6n^2 + 12n + 3$ steps

Since the machine \mathcal{M}_3 is polynomial time in the size n of the input, there is a polytime one-tape NDTM \mathcal{M}_4 with the same language.

A word of the given form has the required property iff it is possible for \mathcal{M}_3 to output some word in the first phase that passes all k tests in the second phase, i.e. if the word is acceptable to \mathcal{M}_3 , or equivalently to \mathcal{M}_4 . So the problem is in NP.