
Theories of Computation: Summative Assignment 2

To be handed in on Canvas before Thursday 31st March, 5pm GMT

Exercise 1 Let Σ = {a, b} and u, v ∈ Σ+, where Σ+ is the set of nonempty words over Σ. We say that u is present
in v if u can be obtained by deleting letters from v. For example, abbba is present in aabbababa. We write |u| to
denote the length of word u, i.e., the number of letters in u. For example, |abbba| = 5.

The goal of this exercise is to show that the following decision problem is in NP.

Input: w0#w1#...#wk such that wi ∈ Σ+ for 0 ≤ i ≤ k.

Problem: is there a word x ∈ Σ+ such that |x| = |w0| and x is present in each wi for 0 < i ≤ k?

We will decompose the task into several steps.

1. Let us consider a two-tape deterministic Turing machineM1 on the input alphabet I = {a, b,#} with initial
state 0, tape alphabet T = {a, b,#, }, return values V = {True, False}, and whose transition function is
represented as the diagram in Figure 1 below.

Initially,

• the Main tape contains a non-empty block of as and bs (representing a word w ∈ Σ+) in between a # on
the left, on which the head is positioned, and a # or a on the right. (Outside of these #s and/or s there
could be any symbol in T .)

• the Aux tape contains a non-empty block of as and bs (representing a word x ∈ Σ+) and is otherwise
blank, and the head is located on the immediately to the left.

For example,
•

Main # a a b b a b a b a #

•
Aux a b b b a

In the case where the input block on the Main tape forms the word w = an and the input block on the Aux tape
forms the word x = am for m,n > 0, how many steps does the machineM1 goes through until it returns a
value in V ? (Returning counts as a step.) [3 marks]

This is in fact the worst case complexity as a function of n = |w| and m = |x| and you can use this fact in the
remainder of the exercise.

2. Design a two-tape nondeterministic Turing machine M2 that takes as an input a word w ∈ Σ+ and can
generate any word x ∈ Σ+ that has the same length as w.

Formally, the start configuration is:

• the Main tape contains a nonempty block of as and bs (representing a word w ∈ Σ+), with a to the left
on which the head is placed and a # to the right, the rest of the tape is blank to the left and can contain
any symbol in T beyond # on the right;

• the Aux tape is blank.

For example,
•

Main a a b b a b a b a #

•
Aux

The machineM2 should stop when reaching a configuration where:

1

0

1

Read Aux

2

3

Read Main

4

5Read Aux

6

7

Read Main

8 9

Read Aux

10 Return False

11 12

Read Main

13 Return True

Right Aux

a
Right Main

b

a

or #

b
Right Main

a

b

or #

Left Aux

a or b

Left Auxa or b

Right Main

a or b

or

Figure 1: Transition diagram for machineM1

• the Main tape is unchanged except for the head which should be placed on the # on the right

• the Aux tape contains an arbitrary block of as and bs (representing a word x ∈ Σ+) of the same length as
the input block on the Main tape and the head is on the first to the left.

For example,
•

Main a a b b a b a b a #

•
Aux b b a b a a a a b

Give the machineM2 and briefly explain your solution. (Do not use more than 10 states.) [3 marks]

3. Using machinesM1 andM2 as macros, design a two-tape nondeterministic Turing machineM3 for the above
decision problem.

This means that the machine should start with

• a block of as, bs and #s representing the input w0#w1#...#wk on an otherwise blank Main tape with
the head on the first to the left of w0

2

• and a blank Aux tape.

The tape contents and head positions at the end do not matter.

Give the machineM3 and briefly explain your solution. (Do not use more than 5 states.) [3 marks]

4. Explain briefly why the problem is in NP. [3 marks]
(Note: You may assume that any polytime two-tape nondeterministic Turing machine can be converted into a
polytime one-tape nondeterministic machine with the same language. Just as we learnt in lectures for deter-
ministic machines.)

Solution 1 Note that these solutions are more detailed than was required.

1. When m ≤ n, the machine takes 4m + 2n + 7 steps. When m > n, the machine takes 6n + 7 steps.

Detailed explanation:

• If m ≤ n: First, we go exactly m times through the (0-1-2-3-0) loop = 4m steps; until the last move right
Aux gets us to a = 2 steps. At which point the auxiliary head is moved back to the to the left of the input
block by going through it backwards via cycle (4-5-4) = 2m steps; until the last move left Aux gets us to
a = 2 steps. Then, we finish reading up to the end of the block on the main tape via cycle (11-12-11) =
2(n−m) steps; before the last move right Main gets us to # or = 2 steps, and we return True = 1 step.
Total: 4m + 2 + 2m + 2 + 2(n−m) + 2 + 1 = 4m + 2n + 7

• If m > n: First, we go exactly n times through the (0-1-2-3-0) loop = 4n steps; until the last move right
Main gets us to a or # = 4 steps. At which point the auxiliary head is simply moved back on the to the
left of the input block by going through it backwards = 2n steps; before the last move left Aux gets us to a

= 2 steps and we return False = 1 step.
Total: 4n + 4 + 2n + 2 + 1 = 6n + 7

2.

0

1

2

Read Main

3 Choose

4

5

6

7

Read Aux

8 Return Stop

Right Main

Right Aux

a or b
0

1Left Aux

a or b

Write Aux a

Write Aux b

3

The machine uses the input on the main tape as a counter, going through each character until it reaches a #
or a . For each character that it reads on the main tape, it chooses nondeterministically to write an a or a b
on the auxiliary tape. When it reaches the end of the input block on the main tape, it ‘rewinds’ the head on the
auxiliary tape to the beginning the generated block of characters.

3.

0 1 Read Main

2

M1

3 Return True

4 Return False

M2 Stop

#

False
True

Input: w0#w1#...#wk such that wi ∈ Σ+ for 0 ≤ i ≤ k on Main tape with head on the to the left.

We start by runningM2 on w0 to generate a word x on the Aux tape (which is otherwise blank).

When it stops, it leaves the head on the (if k = 0) or the # (if k ≥ 1) following w0.

For i = 1 to k repeat (∗)
We read the symbol under the head.

If it is we return True. If it is # we runM1 on word wi and x.

If it returns True, then we go back to (∗).

If it returns False, then we return False as it means that x is not present in wi.

4. Let us denote the size of the input by n which corresponds to
∑k

0 |wi| + (k − 1) (when k ≥ 1 or simply |w0|
when k = 0).

Complexity ofM2: 5|w0|+ 2 + 2|w0|+ 1 ≤ 7n + 3

Complexity ofM1: In the worst case we will repeat the loop (∗) once for each word wi for 1 ≤ i ≤ k. That is,
the total number of steps would be:

∑k
1(1 + 4|w0|+ 2|wi|+ 3) + 1 ≤ (k − 1)(6n + 4) ≤ 6n2 + 4n

Complexity of M3: ≤ 7n + 3 + 6n2 + 4n + k (as we need to do the extra Read Main instruction k times)
≤ 6n2 + 12n + 3 steps

Since the machineM3 is polynomial time in the size n of the input, there is a polytime one-tape NDTMM4

with the same language.

A word of the given form has the required property iff it is possible for M3 to output some word in the first
phase that passes all k tests in the second phase, i.e. if the word is acceptable toM3, or equivalently toM4.
So the problem is in NP.

4

