Theories of Computation: Summative Assignment 2

To be handed in on Canvas before Thursday 31st March, 5pm GMT

Exercise 1 Let $\Sigma = \{a, b\}$ and $u, v \in \Sigma^+$, where Σ^+ is the set of nonempty words over Σ . We say that u is present in v if u can be obtained by deleting letters from v. For example, abbba is present in aabbababa. We write |u| to denote the length of word u, i.e., the number of characters. For example, |abbba| = 5.

The goal of this exercise is to show that the following decision problem is in NP.

Input: $w_0 \# w_1 \# \dots \# w_k$ such that $w_i \in \Sigma^+$ for $0 \le i \le k$.

Problem: is there a word $x \in \Sigma^+$ such that $|x| = |w_0|$ and x is present in each w_i for $0 < i \le k$?

We will decompose the task into several steps.

1. Let us consider a two-tape deterministic Turing machine \mathcal{M}_1 on the input alphabet $\{a, b, \#\}$ with initial state 0, tape alphabet $T = \{a, b, \#, _\}$, return values $V = \{\texttt{True}, \texttt{False}\}$, and whose transition function is represented as the diagram in Figure 1 below.

Initially,

- the Main tape contains a non-empty block of as and bs (representing a word $w \in \Sigma^+$) in between a # on the left, on which the head is positioned, and a # or a $_$ on the right. (Outside of these #s and/or $_$ s there could be any symbol in T.)
- the Aux tape contains a non-empty block of as and bs (representing a word $x \in \Sigma^+$) and is otherwise blank and the head is located on the $_$ immediately to the left.

For example,	Main	#	а	а	b	b	a	b	a	b	a	#
	Aux	•]	а	b	b	b	а	_		L		L

In the case where the input block on the Main tape forms the word $w = a^n$ and the input block on the Aux tape forms the word $x = a^m$ for m, n > 0, how many steps does the machine \mathcal{M}_1 goes through until it returns a value in V? (Returning counts as a step.) [3 marks]

This is in fact the worst case complexity as a function of n = |w| and m = |x| and you can use this fact in the remainder of the exercise.

2. Design a two-tape nondeterministic Turing machine \mathcal{M}_2 that takes as an input a word $w \in \Sigma^+$ and can generate any word $x \in \Sigma^+$ that has the same length as w.

Formally, the start configuration is:

- the Main tape contains a nonempty block of as and bs (representing a word $w \in \Sigma^+$), with a $_$ to the left on which the head is placed and a # to the right, the rest of the tape is blank to the left and can contain any symbol in T beyond # on the right;
- the Aux tape is blank.

The machine M_2 should stop when reaching a configuration where:

Figure 1: Transition diagram for machine \mathcal{M}_1

- the Main tape is unchanged except for the head which should be placed on the # on the right
- the Aux tape contains an arbitrary block of as and bs (representing a word $x \in \Sigma^+$) of the same length as the input block on the Main tape and the head is on the first $_$ to the left.

Give the machine M_2 and briefly explain your solution. (Do not use more than 10 states.) [3 marks]

3. Using machines M_1 and M_2 as macros, design a two-tape nondeterministic Turing machine M_3 for the above decision problem.

This means that the machine should start with

• a block of as, bs and #s representing the input $w_0 # w_1 # ... # w_k$ on an otherwise blank Main tape with the head on the first $_$ to the left of w_0

• and a blank Aux tape.

The tape contents and head positions at the end do not matter.Give the machine \mathcal{M}_3 and briefly explain your solution. (Do not use more than 5 states.)[3 marks]

4. Explain briefly why the problem is in NP.

(*Note:* You may assume that any polytime two-tape nondeterministic Turing machine can be converted into a polytime one-tape nondeterministic machine with the same language. Just as we learnt in lectures for deterministic machines.)

[3 marks]