Theories of Computation: Summative Assignment 1

To be handed in on Canvas before Thursday 3rd March, 5pm GMT

Exercise 1 We consider the alphabet $\Sigma = \{0, 1\}$. We want to study the following grammar G:

\Rightarrow	S	::=	ZY	$\mid XZ$
	X	::=	0X1	ϵ
	Y	::=	1Y0	ϵ
	Z	::=	0Z	ϵ

1.	Give a derivation tree in G for the word 001100 and the corresponding left-most derivation.	[2 marks]
2.	Is the above grammar G ambiguous? Justify your answer.	[2 marks]
3.	Are the following words in $L(G)$? Simply answer yes or no.	[2 marks]
	() 01000	

- (a) 01000
- (b) 1
- (c) 01100
- (d) ϵ
- 4. What is the language L(G) generated by this grammar?

Solution 1 *1.* In this grammar G, there are two possible derivation trees for 001100 displayed below with the corresponding left-most derivations.

- 2. Because there are two distinct derivation trees for 001100, G is ambiguous.
- 3. (a) Yes; (b) No; (c) Yes; (d) Yes.
- 4. The grammar

would generate the language $L_0 = \{0^a 1^b 0^c \mid b = c \text{ where } a, b, c \in \mathbb{N}\},\$ while the grammar

$$\Rightarrow \begin{array}{cccc} S & ::= & XZ \\ X & ::= & 0X1 & | & \epsilon \\ Z & ::= & 0Z & | & \epsilon \end{array}$$

would generate the language $L_1 = \{0^a 1^b 0^c \mid a = b \text{ where } a, b, c \in \mathbb{N}\}.$

G can generate the union $L_0 \cup L_1$ of two languages, i.e., $L(G) = \{0^a 1^b 0^c \mid a = b \text{ or } b = c \text{ where } a, b, c \in \mathbb{N}\}.$

[2 marks]

Exercise 2 Here again $\Sigma = \{0, 1\}$. Design a context-free grammar for the following language:

[2 marks]

$$L = \{0^a 1^b 0^c \mid a + b = c \text{ where } a, b, c \in \mathbb{N}\}$$

Solution 2 *The following grammar generates the language L*