Theories of Computation: Summative Assignment 1

To be handed in on Canvas before Thursday 3rd March, 5pm GMT

Exercise 1 We consider the alphabet $\Sigma = \{0, 1\}$. We want to study the following grammar G:

\Rightarrow	S	::=	ZY		XZ
	X	::=	0X1		ϵ
	Y	::=	1Y0		ϵ
	Z	::=	0Z	Ì	ϵ

1. Give a derivation tree in G for the word 001100 and the corresponding left-most derivation.	[2 marks]
2. Is the above grammar G ambiguous? Justify your answer.	[2 marks]
3. Are the following words in $L(G)$? Simply answer yes or no.	[2 marks]
<i>(a)</i> 01000	
<i>(b)</i> 1	
(c) 01100	
$(d) \epsilon$	
4. What is the language $L(G)$ generated by this grammar?	[2 marks]
Exercise 2 Here again $\Sigma = \{0, 1\}$. Design a context-free grammar for the following language:	[2 marks]

 $L = \{0^{a}1^{b}0^{c} \mid a + b = c \text{ where } a, b, c \in \mathbb{N}\}$