Theories of Computation: Formative Assignment 2

To be handed in on Canvas before Thursday 17th March, 5pm GMT

Exercise 1 (Time Complexity in Big-O) Let us consider two algorithms. Algorithm A_1 has running time $T_1(n) = \begin{cases} 5n^3 + 2 & for \quad 0 \le n \le 3\\ 7n + 9 & for \quad n \ge 4 \end{cases}$ Algorithm A_2 has running time $T_2(n) = \begin{cases} 3n^4 + 3 & for \quad 0 \le n \le 2\\ 2n^2 & for \quad n \ge 3 \end{cases}$

1. Show that $T_1(n)$ is O(n) and $T_2(n)$ is $O(n^2)$.

Remember: To justify your claim that f(n) is O(g(n)) provide constants M and C that satisfy the property that $\forall n \ge M. f(n) \le Cg(n)$.

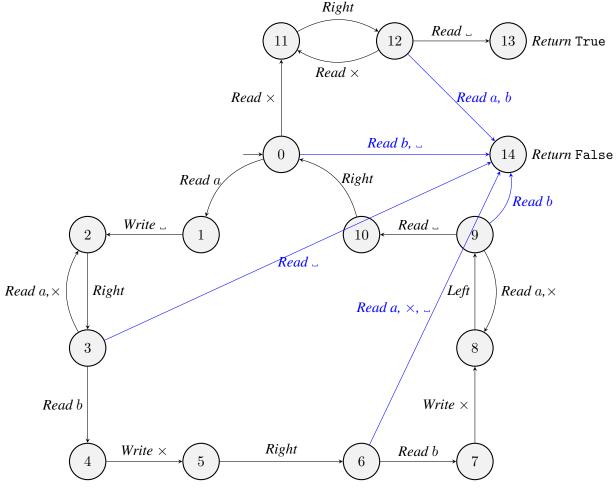
2. For each $n \ge 0$ which algorithm is more efficient? Justify your answer.

Solution 1

1.

 $T_1(n) = O(n)$: For $n \ge 4$, $T_1(n) = 7n + 9 \le 10n$. So we can take $M_1 = 4$ and $C_1 = 10$. $T_2(n) = O(n^2)$: For $n \ge 3$, $T_2(n) = 2n^2 \le 2n^2$. So we can take $M_2 = 3$ and $C_2 = 2$.

2.


n	0	1	2	3	4	5	6	7
$T_1(n)$	2	7	42	137	37	44	51	58
$\mathbf{T_2}(\mathbf{n})$	3	6	51	18	32	50	72	98

For n = 1, n = 3 and n = 4, A_2 is more efficient. For n = 0, n = 2 and $n \ge 5$, A_1 is more efficient. Indeed, when $n \ge 4$, $T_1(n) = T_2(n) \Leftrightarrow 2n^2 - 7n - 9 = 0 \Leftrightarrow n = 4.5$.

[2 marks]

[2 marks]

Exercise 2 (Turing Machines) Let us consider a Turing machine M on the input alphabet $\Sigma = \{a, b\}$ with initial state 0, tape alphabet $T = \{a, b, _, \times\}$, return values $V = \{\text{True}, \text{False}\}$, and whose transition function is represented as the following diagram.

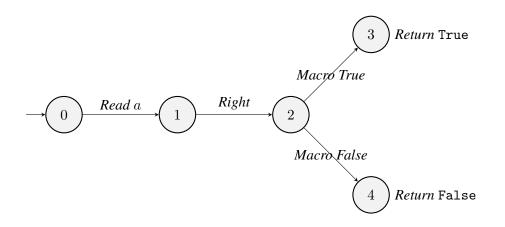
Initially the tape contains a non-empty block of as and bs and is otherwise blank. The head is positioned on the first non blank character.

- Give the complete run of the machine M above on the word ab. At each step, indicate the tape contents, the position of the head, the current state and the instruction (including the result if it is a Read). [2 marks]
 Hint: No more than 10 steps are needed.
- 2. Without justification, does M accept words abb and abbb (i.e. return True if given them as input)? [2 marks]

[2 marks]

- *3.* What is the language $\mathcal{L}(M)$ recognised by M?
- 4. Use machine M as a macro and design a Turing machine with five states that recognises the language $\mathcal{L} = \{a^{n+1}b^{2n} \mid n \ge 1\}?$ [2 marks]

Solution 2 *1. M* does not accept word ab.


	•				
-	a	b	_	0	Read a
	• a	b	L	1	Write _
	•	b	L	2	Right
	_	$\overset{ullet}{b}$	J	3	Read b
	L	$\overset{ullet}{b}$	L	4	Write \times
	_	$_{\times}^{\bullet}$		5	Right
		×	•	6	Read _
		×	•	14	<i>Return</i> False

2. M accepts word abb but does not accept word abbb. (Full runs below were not expected as answers.)

		-			1							
	b	b	L	0	Read a	• a	b	b	b	L	0	Read a
	b	b		1	Write _	$\overset{\bullet}{a}$	b	b	b		1	Write _
•	b	b	J	2	Right	 •	b	b	b	L	2	Right
	$\overset{ullet}{b}$	b	L	3	Read b	L	$\overset{ullet}{b}$	b	b	L	3	Read b
	$\overset{ullet}{b}$	b		4	Write \times	 J	$\overset{ullet}{b}$	b	b		4	Write \times
	$\overset{\bullet}{\times}$	b	J	5	Right	IJ	$\overset{\bullet}{\times}$	b	b	L	5	Right
	×	$\overset{ullet}{b}$	J	6	Read b	J	×	$\overset{ullet}{b}$	b	J	6	Read b
	×	$\overset{ullet}{b}$	J	7	Write \times	J	×	$\overset{ullet}{b}$	b	L	7	Write \times
	×	• ×	J	8	Left	J	×	$\overset{\bullet}{\times}$	b	J	8	Left
	• ×	×		9	$Read \times$	_	• ×	×	b		9	$Read \times$
	• ×	×		8	Left	L	• ×	×	b	J	8	Left
•	×	×		9	Read _	•	×	×	b		9	Read _
•	×	×	L	10	Right	•	×	×	b	J	10	Right
	• ×	×		0	$Read \times$		• ×	×	b		0	$Read \times$
	• ×	×		11	Right		• ×	×	b		11	Right
	×	• ×		12	$Read \times$	_	×	• ×	b		12	$Read \times$
	×	• ×	L	11	Right		×	• ×	b		11	Right
	×	×	•	12	Read _	_	×	×	$\overset{ullet}{b}$	L	12	Read b
	×	×	•	13	<i>Return</i> True		×	×	$\overset{ullet}{b}$		14	<i>Return</i> False

3. $\mathcal{L}(M) = \{a^n b^{2n} \mid n \ge 1\}$

4. Using machine M as a macro instruction at state 2, we can design the following machine to recognise \mathcal{L} :

