UNIVERSITY^{OF} BIRMINGHAM

School of Computer Science

Theories of Computation

May 2022

Theories of Computation

Answer ALL questions. The paper will be marked out of 60, which will be rescaled to a mark out of 100.

Exam paper

Question 1 : Regular Languages and Automata

Consider the regular expression $E = (b \mid ab)^*(a \mid \epsilon)$ on alphabet $\Sigma = \{a, b\}$.

- (a) Do the following words match E? Explain your answer.
 - (i) *ε*
 - (ii) abba
 - (iii) aaa

[6 marks]

(b) Give a minimal total DFA that recognizes the language described by E and prove that it is minimal.

[9 marks]

Question 2 : Context-free Languages

Consider the following context-free grammar $\mathcal G$ on the alphabet $\Sigma = \{a, b\}$

(a) Show that the grammar \mathcal{G} is ambiguous.

[7 marks]

(b) A student is in the process of transforming \mathcal{G} into Chomsky Normal Form and has reached the following:

$$\Rightarrow S_0 ::= S$$

$$S ::= XX$$

$$X ::= AU | BV | a | b | \varepsilon$$

$$U ::= XA$$

$$A ::= a$$

$$V ::= XB$$

$$B ::= b$$

The student's next step is to remove the rule $X ::= \varepsilon$. Give the grammar that results from this step.

[8 marks]

Question 3 : Turing Machines and Complexity

Consider the following deterministic Turing machine \mathcal{M} on alphabet $\Omega = \{a, b, _\}$. The tape initially contains a nonempty block of a's and b's on an otherwise blank tape with the head on the leftmost character. The transition function is given by the following diagram:

(a) Trace the behaviour of the machine \mathcal{M} on the word *aa*.

(b) Recall the notation $\sum_{k=0}^{p} x_k$ for $x_0 + x_1 + \cdots + x_p$.

The processing time for a block of length n > 0 is as follows.

- In the case where n = 2p+2 ($p \ge 0$) the number of steps is $(\sum_{k=0}^{p} (8k+12))+2$.
- In the case where n = 2p+1 ($p \ge 0$) the number of steps is $(\sum_{k=0}^{p} (8k+8))-1$.

Show that the complexity of \mathcal{M} is in $O(n^2)$.

[8 marks]

Question 4 : Models of Computation and Decidability

(a) Removed. Not on the syllabus this year.

[7 marks]

(b) A program in Java is said to be *purple* if it either halts or contains (in the body code) an even number of a's. Show that purpleness is undecidable.

[8 marks]