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What did we cover in this module?

§ Propositional logic
§ Predicate logic
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Today

Revision
§ Propositional Logic

§ Syntax
§ Natural Deduction proofs
§ Semantics
§ SAT

§ Predicate Logic
§ Syntax
§ Natural Deduction proofs
§ Semantics
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Propositional Logic – Syntax & Informal Semantics

Syntax:
P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

Lower-case letters are atoms: p, q, r, etc.
Upper-case letters are (meta-)variables: P , Q, R, etc.

Two special atoms:
§ J which stands for True
§ K which stands for False

We also introduced four connectives:
§ P ^Q: we have a proof of both P and Q

§ P _Q: we have a proof of at least one of P and Q

§ P Ñ Q: if we have a proof of P then we have a proof of Q

§ ␣P : stands for P ÑK
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Propositional Logic – Precedence & Associativity

Precedence: in decreasing order of precedence ␣,^,_,Ñ.

For example:
§ ␣P _Q means p␣P q _Q

§ P ^Q_R means pP ^Qq _R

§ P ^Q Ñ Q^ P means pP ^Qq Ñ pQ^ P q

Associativity: all operators are right associative

For example:
§ P _Q_R means P _ pQ_Rq.
§ P ^Q^R means P ^ pQ^Rq.
§ P Ñ Q Ñ R means P Ñ pQ Ñ Rq.

What are the parse trees of the above formulas?
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Propositional Logic – Constructive Natural Deduction

Constructive Natural Deduction rules:

K

A
rK Es

J
rJIs

A
1

....
B

A Ñ B
1 rÑ Is

A Ñ B A

B
rÑ Es

A
1

....
K

␣A
1 r␣Is

␣A A

K
r␣Es

A

A_B
r_ILs

A

B _A
r_IRs

A_B A Ñ C B Ñ C

C
r_Es

A B

A^B
r^Is

A^B

B
r^ERs

A^B

A
r^ELs
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Propositional Logic – Classical Reasoning

Classical Natural Deduction includes all the Constructive Natural
Deduction rules, plus:

A_␣A
rLEMs

␣␣A

A
rDNEs
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Propositional Logic – Natural Deduction

Typical proof patterns when doing proofs bottom-up:

Propositional logic:
§ _: first r_Es then r_Is

§ ^: first r^Is then r_Es

§ Ñ: first rÑ Is then rÑ Es

§ ␣: first r␣Is then r␣Es

Predicate logic:
§ D: first rDEs then rDIs

§ @: first r@Is then r@Es
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Propositional Logic – Example of a Constructive Proof

Prove pA Ñ Cq Ñ ␣C Ñ ␣pA^Bq

A Ñ C
1

A^B
3

A
r^ELs

C
rÑ Es

␣C
2

K
r␣Es

␣pA^Bq
3 r␣Is

␣C Ñ ␣pA^Bq
2 rÑ Is

pA Ñ Cq Ñ ␣C Ñ ␣pA^Bq
1 rÑ Is
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Propositional Logic – Example of a Classical Proof

Prove pA Ñ pB _ Cqq Ñ ␣B Ñ ␣A_ C

A _ ␣A
rLEMs

A Ñ pB _ Cq
1

A
3

B _ C
rÑ Es

B
5
␣B

2

K
r␣Es

C
rK Es

B Ñ C
4 rÑ Is

C
5

C Ñ C
5 rÑ Is

C
r_Es

␣A _ C
r_IRs

A Ñ ␣A _ C
3 rÑ Is

␣A
6

␣A _ C
r_ILs

␣A Ñ ␣A _ C
6 rÑ Is

␣A _ C
r_Es

␣B Ñ ␣A _ C
2 rÑ Is

pA Ñ pB _ Cqq Ñ ␣B Ñ ␣A _ C
1 rÑ Is
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Propositional Logic – Semantics

A valuation ϕ assigns T or F with each atom

A valuation is extended to all formulas as follows:
§ ϕpJq “ T
§ ϕpKq “ F
§ ϕpA_Bq “ T iff either ϕpAq “ T or ϕpBq “ T
§ ϕpA^Bq “ T iff both ϕpAq “ T and ϕpBq “ T
§ ϕpA Ñ Bq “ T iff ϕpBq “ T whenever ϕpAq “ T
§ ϕp␣Aq “ T iff ϕpAq “ F

Satisfaction & validity:
§ Given a valuation ϕ, we say that ϕ satisfies A if ϕpAq “ T
§ A is satisfiable if there exists a valuation ϕ on atomic

propositions such that ϕpAq “ T
§ A is valid if ϕpAq “ T for all possible valuations ϕ
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Truth Tables

We can use truth tables to check whether propositions are valid:

A B A_B

T T T
T F T
F T T
F F F

A B A^B

T T T
T F F
F T F
F F F

P Q P Ñ Q

T T T
T F F
F T T
F F T

A ␣A

T F
F T

A proposition is (semantically) valid if the last column in its truth
table only contains T
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Propositional Logic – Validity

These techniques can be used to prove the validity of propositions:
§ syntactic: a Natural Deduction proof
§ semantical: a truth table with only T in the last column

We saw that:
§ a formula A is provable in Natural Deduction
§ iff A is semantically valid

This is true about the classical versions of these deduction systems

Therefore, if you manage to prove a formula A using Natural
Deduction then

§ A is semantically valid by soundness
§ A is satisfiable
§ A is not falsifiable

Is pA Ñ Cq Ñ ␣C Ñ ␣pA^Bq valid/satisfiable?
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Satisfiability of CNF formulas

Problem definition: Given a CNF formula can we set T or F value
to each variable/atom to satisfy the formula?

§ Example: Consider the formula pA_␣Bq ^ pC _Bq

§ Is it satisfiable?
§ Satisfiable by setting A “ T, B “ F and C “ T
§ Known as CNF Satisfiability or simply SAT
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Predicate Logic – Syntax

The syntax of predicate logic is defined by the following grammar:
t ::“ x | fpt, . . . , tq
P ::“ ppt, . . . , tq | ␣P | P ^ P | P _ P | P Ñ P | @x.P | Dx.P

where:
§ x ranges over variables
§ f ranges over function symbols
§ fpt1, . . . , tnq is a well-formed term only if f has arity n
§ p ranges over predicate symbols
§ ppt1, . . . , tnq is a well-formed formula only if p has arity n
§ J and K are predicate symbols of arity 0

The pair of a collection of function symbols, and a collection of
predicate symbols, along with their arities, is called a signature.
The scope of a quantifier extends as far right as possible. E.g.,
P ^ @x.ppxq _ qpxq is read as P ^ @x.pppxq _ qpxqq
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§ p ranges over predicate symbols
§ ppt1, . . . , tnq is a well-formed formula only if p has arity n
§ J and K are predicate symbols of arity 0

The pair of a collection of function symbols, and a collection of
predicate symbols, along with their arities, is called a signature.
The scope of a quantifier extends as far right as possible. E.g.,
P ^ @x.ppxq _ qpxq is read as P ^ @x.pppxq _ qpxqq
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Predicate Logic – Substitution

Substitution is defined recursively on terms and formulas:
Prxzts substitute all the free occurrences of x in P with t.

xrxzts = t
xryzts = x
pfpt1, . . . , tnqqrxzts = fpt1rxzts, . . . , tnrxztsq
pppt1, . . . , tnqqrxzts = ppt1rxzts, . . . , tnrxztsq
p␣Pqrxzts = ␣Prxzts
pP1 ^ P2qrxzts = P1rxzts ^ P2rxzts
pP1 _ P2qrxzts = P1rxzts _ P2rxzts
pP1 Ñ P2qrxzts = P1rxzts Ñ P2rxzts
p@x.Pqrxzts = @x.P
pDx.Pqrxzts = Dx.P
p@y.Pqrxzts = @y.Prxzts, if y R fvptq
pDy.Pqrxzts = Dy.Prxzts, if y R fvptq

The additional conditions ensure that free variables do not get
captured.
These conditions can always be met by silently renaming
bound variables before substituting.
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Predicate Logic – Constructive Natural Deduction

Natural Deduction rules for the propositional connectives:

K

A
rK Es

J
rJIs

A
1

....
B

A Ñ B
1 rÑ Is

A Ñ B A

B
rÑ Es

A
1

....
K

␣A
1 r␣Is

␣A A

K
r␣Es

A

A_B
r_ILs

A

B _A
r_IRs

A_B A Ñ C B Ñ C

C
r_Es

A B

A^B
r^Is

A^B

B
r^ERs

A^B

A
r^ELs
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Predicate Logic – Constructive Natural Deduction

Natural Deduction rules for quantifiers:

Prxzys

@x.P
r@Is

@x.P
Prxzts

r@Es
Prxzts

Dx.P
rDIs

Dx.P

Prxzys
1

....
Q

Q
1 rDEs

Condition:
§ for r@Is: y must not be free in any not-yet-discharged hypothesis or in

@x.P
§ for r@Es: fvptq must not clash with bvpPq

§ for rDIs: fvptq must not clash with bvpPq

§ for rDEs: y must not be free in Q or in not-yet-discharged hypotheses or
in Dx.P
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Predicate Logic – Classical Reasoning

Classical Natural Deduction for Predicate Logic
Add the rules:

A_␣A
rLEMs

␣␣A

A
rDNEs

19/24



Predicate Logic – Example of a Proof

Prove pS1q Ñ pS2q Ñ @x.evenpxq Ñ ␣oddpsuccpsuccpxqqq where
S1 “ @x.evenpxq Ñ evenpsuccpsuccpxqqq and
S2 “ @x.oddpxq Ñ ␣evenpxq

S1
1

Epxq Ñ Epspspxqqq
r@Es

Epxq
3

Epspspxqqq
rÑ Es

S2
2

Opspspxqqq Ñ ␣Epspspxqqq
r@Es

Opspspxqqq
4

␣Epspspxqqq
rÑ Es

K
r␣Es

␣Opspspxqqq
4 r␣Is

Epxq Ñ ␣Opspspxqqq
3 rÑ Is

@x.Epxq Ñ ␣Opspspxqqq
r@Is

pS2q Ñ @x.Epxq Ñ ␣Opspspxqqq
2 rÑ Is

pS1q Ñ pS2q Ñ @x.Epxq Ñ ␣Opspspxqqq
1 rÑ Is

Where O stands for odd; E stands for even; and s stands for succ
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Predicate Logic – Semantics

Models: a model provides the interpretation of all symbols

Given a signature xxfk1
1 , . . . , fkn

n y, xpj1
1 , . . . , pjm

m yy

§ of function symbols fi of arity ki, for 1 ď i ď n
§ of predicate symbols pi of arity ji, for 1 ď i ď m

A model is a structure xD, xFf1 , . . . , Ffny, xRp1 , . . . , Rpmyy

§ of a non-empty domain D
§ interpretations Ffi

for function symbols fi

§ interpretations Rpi for function symbols pi

Models of predicate logic replace truth assignments for
propositional logic
Variable valuations:

§ a partial function v
§ that maps variables to D
§ i.e., a mapping of the form x1 ÞÑ d1, . . . , xn ÞÑ dn
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Predicate Logic – Semantics

Given a model M with domain D and a variable valuation v:
§ JtKM

v gives meaning to the term t w.r.t. M and v
§ (M,v P gives meaning to the formula P w.r.t. M and v

Meaning of terms:
§ JxKM

v “ vpxq
§ Jfpt1, . . . , tnqKM

v “ Ff pxJt1KM
v , . . . , JtnKM

v yq

Meaning of formulas:
§ (M,v J and ␣(M,vK

§ (M,v ppt1, . . . , tnq iff xJt1KM
v , . . . , JtnKM

v y P Rp

§ (M,v ␣P iff ␣(M,v P
§ (M,v P ^Q iff (M,v P and (M,v Q
§ (M,v P _Q iff (M,v P or (M,v Q
§ (M,v P Ñ Q iff (M,v Q whenever (M,v P
§ (M,v @x.P iff for every d P D we have (M,pv,xÞÑdq P
§ (M,v Dx.P iff there exists a d P D such that (M,pv,xÞÑdq P
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Predicate Logic – Soundness & Completeness

Natural Deduction for Predicate Logic is
§ sound, i.e., if $ A then |ù A, and
§ complete, i.e., if |ù A then $ A

w.r.t. the model semantics of Predicate Logic
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Predicate Logic – Semantics

Consider the signature: xxy, xeven1, odd1yy

Let P be the formula @x.evenpxq Ñ pevenpxq ^ oddpxqq

Examples of models of P?
§ xN, xy, xtxny | n is evenu, txny | n is evenuyy
§ xN, xy, xtxny | n is oddu, txny | n is odduyy
§ xN, xy, xtxny | Trueu, txny | Trueuyy
§ xN, xy, xtxny | n is oddu, txny | Trueuyy
§ xN, xy, xtx1yu, tx1yuyy
§ xN, xy, x∅, tx0yuyy

Examples of models that are not models of P (i.e., models of ␣P )?
§ xN, xy, xtxny | n is evenu, txny | n is odduyy
§ xN, xy, xtxny | n is oddu, txny | n is evenuyy
§ xN, xy, xtxny | n is oddu, ∅yy
§ xN, xy, xtx0yu, ∅yy
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