Mathematical and Logical Foundations of Computer Science

Revision Lecture

Vincent Rahli

University of Birmingham

What did we cover in this module?

- Propositional logic
- Predicate logic

Today

Revision

Propositional Logic

- Syntax
- Natural Deduction proofs
- Semantics
- SAT

Predicate Logic

- Syntax
- Natural Deduction proofs
- Semantics

Syntax:

$$P ::= a \mid P \land P \mid P \lor P \mid P \to P \mid \neg P$$

Syntax:

$$P ::= a \mid P \land P \mid P \lor P \mid P \to P \mid \neg P$$

Lower-case letters are atoms: p, q, r, etc.

Upper-case letters are (meta-)variables: P, Q, R, etc.

Syntax:

$$P ::= a \mid P \land P \mid P \lor P \mid P \to P \mid \neg P$$

Lower-case letters are atoms: p, q, r, etc. Upper-case letters are (meta-)variables: P, Q, R, etc.

Two special atoms:

- \top which stands for True
- \perp which stands for False

Syntax:

$$P ::= a \mid P \land P \mid P \lor P \mid P \to P \mid \neg P$$

Lower-case letters are atoms: p, q, r, etc. Upper-case letters are (meta-)variables: P, Q, R, etc.

Two special atoms:

- \top which stands for True
- \perp which stands for False

We also introduced four connectives:

- $P \land Q$: we have a proof of both P and Q
- $P \lor Q$: we have a proof of at least one of P and Q
- $P \rightarrow Q$: if we have a proof of P then we have a proof of Q
- $\neg P$: stands for $P \rightarrow \bot$

Precedence: in decreasing order of precedence \neg , \land , \lor , \rightarrow .

Precedence: in decreasing order of precedence \neg , \land , \lor , \rightarrow .

For example:

- $\blacktriangleright \ \neg P \lor Q \text{ means } (\neg P) \lor Q$
- $P \land Q \lor R$ means $(P \land Q) \lor R$
- $P \land Q \rightarrow Q \land P$ means $(P \land Q) \rightarrow (Q \land P)$

Precedence: in decreasing order of precedence \neg , \land , \lor , \rightarrow .

For example:

- $\blacktriangleright \ \neg P \lor Q \text{ means } (\neg P) \lor Q$
- $P \land Q \lor R$ means $(P \land Q) \lor R$
- $P \land Q \rightarrow Q \land P$ means $(P \land Q) \rightarrow (Q \land P)$

Associativity: all operators are right associative

Precedence: in decreasing order of precedence \neg , \land , \lor , \rightarrow .

For example:

- $\neg P \lor Q$ means $(\neg P) \lor Q$
- $P \land Q \lor R$ means $(P \land Q) \lor R$
- $P \land Q \rightarrow Q \land P$ means $(P \land Q) \rightarrow (Q \land P)$

Associativity: all operators are right associative

For example:

- $P \lor Q \lor R$ means $P \lor (Q \lor R)$.
- $P \land Q \land R$ means $P \land (Q \land R)$.
- $\blacktriangleright P \to Q \to R \text{ means } P \to (Q \to R).$

Precedence: in decreasing order of precedence \neg , \land , \lor , \rightarrow .

For example:

- $\neg P \lor Q$ means $(\neg P) \lor Q$
- $P \land Q \lor R$ means $(P \land Q) \lor R$
- $P \land Q \rightarrow Q \land P$ means $(P \land Q) \rightarrow (Q \land P)$

Associativity: all operators are right associative

For example:

- $P \lor Q \lor R$ means $P \lor (Q \lor R)$.
- $P \land Q \land R$ means $P \land (Q \land R)$.
- $P \rightarrow Q \rightarrow R$ means $P \rightarrow (Q \rightarrow R)$.

What are the parse trees of the above formulas?

Propositional Logic – Constructive Natural Deduction

Propositional Logic – Classical Reasoning

Classical Natural Deduction includes all the Constructive Natural Deduction rules, plus:

$$\frac{\neg \neg A}{A \vee \neg A} \quad [LEM] \qquad \frac{\neg \neg A}{A} \quad [DNE]$$

Propositional Logic – Natural Deduction

Typical proof patterns when doing proofs bottom-up:

Propositional logic:

- \lor : first $[\lor E]$ then $[\lor I]$
- \land : first $[\land I]$ then $[\lor E]$
- \rightarrow : first $[\rightarrow I]$ then $[\rightarrow E]$
- \neg : first $[\neg I]$ then $[\neg E]$

Predicate logic:

- ▶ \exists : first $[\exists E]$ then $[\exists I]$
- \forall : first $[\forall I]$ then $[\forall E]$

Propositional Logic – Example of a Constructive Proof

Prove $(A \to C) \to \neg C \to \neg (A \land B)$

Propositional Logic – Example of a Constructive Proof

Prove $(A \to C) \to \neg C \to \neg (A \land B)$

$$\frac{\overline{A \to C} \ ^{1} \ \frac{\overline{A \land B}}{A} \ ^{3}_{[\land E_{L}]}}{[\to E] \ \overline{\neg C}} \ ^{2}_{[\neg E]} \\ \frac{\overline{C} \ \frac{\bot}{\neg (A \land B)} \ ^{3} [\neg I]}{[\neg C \to \neg (A \land B)} \ ^{2} [\to I]} \\ \frac{\overline{\neg C \to \neg (A \land B)} \ ^{2} [\to I]}{[A \to C) \to \neg C \to \neg (A \land B)} \ ^{1} [\to I]$$

Propositional Logic – Example of a Classical Proof

Prove $(A \to (B \lor C)) \to \neg B \to \neg A \lor C$

Propositional Logic – Example of a Classical Proof

Prove $(A \to (B \lor C)) \to \neg B \to \neg A \lor C$

$$\frac{A \rightarrow (B \lor C)}{A \lor \neg A} \stackrel{1}{\longrightarrow} \stackrel{-3}{\longrightarrow} \stackrel{-3}{\longrightarrow} \stackrel{-1}{\longrightarrow} \stackrel{-1}$$

A valuation ϕ assigns ${\bf T}$ or ${\bf F}$ with each atom

A valuation ϕ assigns **T** or **F** with each atom

A valuation is **extended** to all formulas as follows:

A valuation ϕ assigns ${\bf T}$ or ${\bf F}$ with each atom

A valuation is **extended** to all formulas as follows:

•
$$\phi(\top) = \mathbf{T}$$

A valuation ϕ assigns ${\bf T}$ or ${\bf F}$ with each atom

A valuation is **extended** to all formulas as follows:

- $\phi(\top) = \mathbf{T}$
- $\phi(\perp) = \mathbf{F}$

- A valuation ϕ assigns ${\bf T}$ or ${\bf F}$ with each atom
- A valuation is **extended** to all formulas as follows:
 - $\phi(\top) = \mathbf{T}$
 - $\phi(\perp) = \mathbf{F}$
 - $\phi(A \lor B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$

- A valuation ϕ assigns **T** or **F** with each atom
- A valuation is **extended** to all formulas as follows:
 - $\phi(\top) = \mathbf{T}$
 - $\phi(\perp) = \mathbf{F}$
 - $\phi(A \lor B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$
 - $\phi(A \land B) = \mathbf{T}$ iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$

- A valuation ϕ assigns **T** or **F** with each atom
- A valuation is extended to all formulas as follows:
 - $\phi(\top) = \mathbf{T}$
 - $\phi(\perp) = \mathbf{F}$
 - $\phi(A \lor B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$
 - $\phi(A \land B) = \mathbf{T}$ iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$
 - $\phi(A \rightarrow B) = \mathbf{T} \text{ iff } \phi(B) = \mathbf{T} \text{ whenever } \phi(A) = \mathbf{T}$

- A valuation ϕ assigns **T** or **F** with each atom
- A valuation is **extended** to all formulas as follows:
 - $\phi(\top) = \mathbf{T}$
 - $\phi(\perp) = \mathbf{F}$
 - $\phi(A \lor B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$
 - $\phi(A \land B) = \mathbf{T}$ iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$
 - $\phi(A \rightarrow B) = \mathbf{T} \text{ iff } \phi(B) = \mathbf{T} \text{ whenever } \phi(A) = \mathbf{T}$
 - $\phi(\neg A) = \mathbf{T} \text{ iff } \phi(A) = \mathbf{F}$

- A valuation ϕ assigns **T** or **F** with each atom
- A valuation is **extended** to all formulas as follows:
 - $\phi(\top) = \mathbf{T}$
 - $\phi(\perp) = \mathbf{F}$
 - $\phi(A \lor B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$
 - $\phi(A \land B) = \mathbf{T}$ iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$
 - $\phi(A \rightarrow B) = \mathbf{T}$ iff $\phi(B) = \mathbf{T}$ whenever $\phi(A) = \mathbf{T}$
 - $\phi(\neg A) = \mathbf{T} \text{ iff } \phi(A) = \mathbf{F}$

Satisfaction & validity:

- A valuation ϕ assigns **T** or **F** with each atom
- A valuation is **extended** to all formulas as follows:
 - $\phi(\top) = \mathbf{T}$
 - $\phi(\perp) = \mathbf{F}$
 - $\phi(A \lor B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$
 - $\phi(A \land B) = \mathbf{T}$ iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$
 - $\phi(A \rightarrow B) = \mathbf{T}$ iff $\phi(B) = \mathbf{T}$ whenever $\phi(A) = \mathbf{T}$
 - $\phi(\neg A) = \mathbf{T} \text{ iff } \phi(A) = \mathbf{F}$

Satisfaction & validity:

• Given a valuation ϕ , we say that ϕ satisfies A if $\phi(A) = \mathbf{T}$

- A valuation ϕ assigns **T** or **F** with each atom
- A valuation is **extended** to all formulas as follows:
 - $\phi(\top) = \mathbf{T}$
 - $\phi(\perp) = \mathbf{F}$
 - $\phi(A \lor B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$
 - $\phi(A \land B) = \mathbf{T}$ iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$
 - $\phi(A \rightarrow B) = \mathbf{T}$ iff $\phi(B) = \mathbf{T}$ whenever $\phi(A) = \mathbf{T}$
 - $\phi(\neg A) = \mathbf{T} \text{ iff } \phi(A) = \mathbf{F}$

Satisfaction & validity:

- Given a valuation ϕ , we say that ϕ satisfies A if $\phi(A) = \mathbf{T}$
- ► A is satisfiable if there exists a valuation φ on atomic propositions such that φ(A) = T

- A valuation ϕ assigns **T** or **F** with each atom
- A valuation is **extended** to all formulas as follows:
 - $\phi(\top) = \mathbf{T}$
 - $\phi(\perp) = \mathbf{F}$
 - $\phi(A \lor B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$
 - $\phi(A \land B) = \mathbf{T}$ iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$
 - $\phi(A \rightarrow B) = \mathbf{T}$ iff $\phi(B) = \mathbf{T}$ whenever $\phi(A) = \mathbf{T}$
 - $\phi(\neg A) = \mathbf{T} \text{ iff } \phi(A) = \mathbf{F}$

Satisfaction & validity:

- Given a valuation ϕ , we say that ϕ satisfies A if $\phi(A) = \mathbf{T}$
- ► A is satisfiable if there exists a valuation φ on atomic propositions such that φ(A) = T
- A is valid if $\phi(A) = \mathbf{T}$ for all possible valuations ϕ

Truth Tables

We can use truth tables to check whether propositions are valid:

A	B	$A \lor B$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

A proposition is (semantically) valid if the last column in its truth table only contains ${\sf T}$

These techniques can be used to prove the validity of propositions:

- syntactic: a Natural Deduction proof
- semantical: a truth table with only T in the last column

These techniques can be used to prove the validity of propositions:

- syntactic: a Natural Deduction proof
- semantical: a truth table with only T in the last column

We saw that:

- ▶ a formula A is provable in Natural Deduction
- ▶ iff A is semantically valid

These techniques can be used to prove the validity of propositions:

- syntactic: a Natural Deduction proof
- semantical: a truth table with only T in the last column

We saw that:

- ▶ a formula A is provable in Natural Deduction
- ▶ iff A is semantically valid

This is true about the classical versions of these deduction systems

These techniques can be used to prove the validity of propositions:

- syntactic: a Natural Deduction proof
- semantical: a truth table with only T in the last column

We saw that:

- ▶ a formula A is provable in Natural Deduction
- ▶ iff A is semantically valid

This is true about the classical versions of these deduction systems

Therefore, if you manage to prove a formula A using **Natural Deduction** then

- A is semantically valid by soundness
- A is satisfiable
- A is <u>not</u> falsifiable
Propositional Logic – Validity

These techniques can be used to prove the validity of propositions:

- syntactic: a Natural Deduction proof
- semantical: a truth table with only T in the last column

We saw that:

- ▶ a formula A is provable in Natural Deduction
- ▶ iff A is semantically valid

This is true about the classical versions of these deduction systems

Therefore, if you manage to prove a formula A using **Natural Deduction** then

- A is semantically valid by soundness
- A is satisfiable
- A is <u>not</u> falsifiable

Is $(A \to C) \to \neg C \to \neg (A \land B)$ valid/satisfiable?

Problem definition: Given a CNF formula can we set **T** or **F** value to each variable/atom to satisfy the formula?

• **Example**: Consider the formula $(A \lor \neg B) \land (C \lor B)$

- **Example**: Consider the formula $(A \lor \neg B) \land (C \lor B)$
- Is it satisfiable?

- **Example**: Consider the formula $(A \lor \neg B) \land (C \lor B)$
- Is it satisfiable?
- Satisfiable by setting $A = \mathbf{T}$, $B = \mathbf{F}$ and $C = \mathbf{T}$

- **Example**: Consider the formula $(A \lor \neg B) \land (C \lor B)$
- Is it satisfiable?
- Satisfiable by setting $A = \mathbf{T}$, $B = \mathbf{F}$ and $C = \mathbf{T}$
- Known as CNF Satisfiability or simply SAT

The syntax of predicate logic is defined by the following grammar:

 $\begin{aligned} t & ::= x \mid f(t, \dots, t) \\ P & ::= p(t, \dots, t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{aligned}$

The syntax of predicate logic is defined by the following grammar:

$$t \quad ::= \quad x \mid f(t, \dots, t)$$

 $P \quad ::= \quad p(t, \dots, t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1, \ldots, t_n)$ is a well-formed formula only if p has arity n
- \top and \bot are predicate symbols of arity 0

The syntax of predicate logic is defined by the following grammar:

$$t \quad ::= \quad x \mid f(t, \dots, t)$$

 $P \quad ::= \quad p(t, \dots, t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1,\ldots,t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1, \ldots, t_n)$ is a well-formed formula only if p has arity n
- \top and \bot are predicate symbols of arity 0

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**.

The syntax of predicate logic is defined by the following grammar:

$$t \quad ::= \quad x \mid f(t, \dots, t)$$

 $P \quad ::= \quad p(t, \dots, t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1,\ldots,t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1, \ldots, t_n)$ is a well-formed formula only if p has arity n
- \top and \bot are predicate symbols of arity 0

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**. The scope of a quantifier extends as far right as possible. E.g., $P \land \forall x.p(x) \lor q(x)$ is read as $P \land \forall x.(p(x) \lor q(x))$

Substitution is defined recursively on terms and formulas: $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

Substitution is defined recursively on terms and formulas: $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

Substitution is defined recursively on terms and formulas: $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

The additional conditions ensure that free variables do not get captured.

Substitution is defined recursively on terms and formulas: $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

The additional conditions ensure that free variables do not get captured.

These conditions can always be met by silently renaming bound variables before substituting.

Predicate Logic – Constructive Natural Deduction

Natural Deduction rules for the propositional connectives:

$$\frac{\overline{A}}{A}^{1} \stackrel{1}{\vdots} \stackrel{1}{\longrightarrow} \stackrel{1}$$

Predicate Logic – Constructive Natural Deduction

Natural Deduction rules for quantifiers:

$$\frac{P[x \setminus y]}{\forall x.P} \quad [\forall I] \qquad \frac{\forall x.P}{P[x \setminus t]} \quad [\forall E] \qquad \frac{P[x \setminus t]}{\exists x.P} \quad [\exists I] \qquad \frac{\exists x.P \quad Q}{Q} \quad 1 \quad [\exists E]$$

Condition:

- \blacktriangleright for $[\forall I]\colon y$ must not be free in any not-yet-discharged hypothesis or in $\forall x.P$
- for $[\forall E]$: fv(t) must not clash with bv(P)
- for $[\exists I]$: fv(t) must not clash with bv(P)
- For [∃E]: y must not be free in Q or in not-yet-discharged hypotheses or in ∃x.P

Predicate Logic – Classical Reasoning

Classical Natural Deduction for Predicate Logic Add the rules:

$$\frac{\neg \neg A}{A \vee \neg A} \quad [LEM] \qquad \frac{\neg \neg A}{A} \quad [DNE]$$

Predicate Logic – Example of a Proof

Prove $(S_1) \rightarrow (S_2) \rightarrow \forall x.even(x) \rightarrow \neg odd(succ(succ(x)))$ where $S_1 = \forall x.even(x) \rightarrow even(succ(succ(x)))$ and $S_2 = \forall x.odd(x) \rightarrow \neg even(x)$

Predicate Logic – Example of a Proof

Prove $(S_1) \rightarrow (S_2) \rightarrow \forall x.even(x) \rightarrow \neg odd(succ(succ(x)))$ where $S_1 = \forall x.even(x) \rightarrow even(succ(succ(x)))$ and $S_2 = \forall x.odd(x) \rightarrow \neg even(x)$

Where O stands for odd; E stands for even; and s stands for succ

Models: a model provides the interpretation of all symbols

Models: a model provides the interpretation of all symbols Given a signature $\langle\langle f_1^{k_1}, \ldots, f_n^{k_n} \rangle, \langle p_1^{j_1}, \ldots, p_m^{j_m} \rangle \rangle$

- of function symbols f_i of arity k_i , for $1 \leq i \leq n$
- of predicate symbols p_i of arity j_i , for $1 \leq i \leq m$

Models: a model provides the interpretation of all symbols Given a signature $\langle \langle f_1^{k_1}, \ldots, f_n^{k_n} \rangle, \langle p_1^{j_1}, \ldots, p_m^{j_m} \rangle \rangle$

- of function symbols f_i of arity k_i , for $1 \leq i \leq n$
- of predicate symbols p_i of arity j_i , for $1 \leq i \leq m$
- A model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$
 - ▶ of a non-empty domain *D*
 - interpretations \mathcal{F}_{f_i} for function symbols f_i
 - interpretations \mathcal{R}_{p_i} for function symbols p_i

Models: a model provides the interpretation of all symbols Given a signature $\langle \langle f_1^{k_1}, \ldots, f_n^{k_n} \rangle, \langle p_1^{j_1}, \ldots, p_m^{j_m} \rangle \rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \leq i \leq m$
- A model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$
 - ▶ of a non-empty domain *D*
 - interpretations \mathcal{F}_{f_i} for function symbols f_i
 - interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace **truth assignments** for propositional logic

Models: a model provides the interpretation of all symbols Given a signature $\langle \langle f_1^{k_1}, \ldots, f_n^{k_n} \rangle, \langle p_1^{j_1}, \ldots, p_m^{j_m} \rangle \rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \leq i \leq m$
- A model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$
 - ▶ of a non-empty domain *D*
 - interpretations \mathcal{F}_{f_i} for function symbols f_i
 - interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace **truth assignments** for propositional logic

Variable valuations:

Models: a model provides the interpretation of all symbols Given a signature $\langle \langle f_1^{k_1}, \ldots, f_n^{k_n} \rangle, \langle p_1^{j_1}, \ldots, p_m^{j_m} \rangle \rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \leq i \leq m$
- A model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$
 - ▶ of a non-empty domain *D*
 - interpretations \mathcal{F}_{f_i} for function symbols f_i
 - interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace **truth assignments** for propositional logic

Variable valuations:

 \blacktriangleright a partial function v

Models: a model provides the interpretation of all symbols Given a signature $\langle \langle f_1^{k_1}, \ldots, f_n^{k_n} \rangle, \langle p_1^{j_1}, \ldots, p_m^{j_m} \rangle \rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \leq i \leq m$
- A model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$
 - ▶ of a non-empty domain *D*
 - interpretations \mathcal{F}_{f_i} for function symbols f_i
 - interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace **truth assignments** for propositional logic

Variable valuations:

- \blacktriangleright a partial function v
- that maps variables to D

Models: a model provides the interpretation of all symbols Given a signature $\langle \langle f_1^{k_1}, \ldots, f_n^{k_n} \rangle, \langle p_1^{j_1}, \ldots, p_m^{j_m} \rangle \rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \leq i \leq m$
- A model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$
 - ▶ of a non-empty domain *D*
 - interpretations \mathcal{F}_{f_i} for function symbols f_i
 - interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace **truth assignments** for propositional logic

Variable valuations:

- \blacktriangleright a partial function v
- that maps variables to D
- i.e., a mapping of the form $x_1 \mapsto d_1, \ldots, x_n \mapsto d_n$

Given a model M with domain D and a variable valuation v:

- $\llbracket t \rrbracket_v^M$ gives meaning to the term t w.r.t. M and v
- $\models_{M,v} P$ gives meaning to the formula P w.r.t. M and v

Given a model M with domain D and a variable valuation v:

- $\llbracket t \rrbracket_v^M$ gives meaning to the term t w.r.t. M and v
- $\models_{M,v} P$ gives meaning to the formula P w.r.t. M and v

Meaning of terms:

- $\bullet \ \llbracket x \rrbracket_v^M = v(x)$
- $\bullet \ \llbracket f(t_1,\ldots,t_n) \rrbracket_v^M = \mathcal{F}_f(\langle \llbracket t_1 \rrbracket_v^M,\ldots,\llbracket t_n \rrbracket_v^M \rangle)$

Given a model M with domain D and a variable valuation v:

- $\llbracket t \rrbracket_v^M$ gives meaning to the term t w.r.t. M and v
- $\models_{M,v} P$ gives meaning to the formula P w.r.t. M and v

Meaning of terms:

- $\bullet \ \llbracket x \rrbracket_v^M = v(x)$
- $\bullet \ \overline{\llbracket f(t_1,\ldots,t_n) \rrbracket_v^M} = \mathcal{F}_f(\langle \llbracket t_1 \rrbracket_v^M,\ldots,\llbracket t_n \rrbracket_v^M \rangle)$

Meaning of formulas:

$$\blacktriangleright \models_{M,v} \top$$
 and $\neg \models_{M,v} \bot$

- $\models \models_{M,v} p(t_1,\ldots,t_n) \text{ iff } \langle \llbracket t_1 \rrbracket_v^M,\ldots,\llbracket t_n \rrbracket_v^M \rangle \in \mathcal{R}_p$
- $\blacktriangleright \models_{M,v} \neg P \text{ iff } \neg \models_{M,v} P$
- $\blacktriangleright \models_{M,v} P \land Q \text{ iff } \models_{M,v} P \text{ and } \models_{M,v} Q$
- $\blacktriangleright \models_{M,v} P \lor Q \text{ iff } \models_{M,v} P \text{ or } \models_{M,v} Q$
- $\blacktriangleright \models_{M,v} P \to Q \text{ iff } \models_{M,v} Q \text{ whenever } \models_{M,v} P$
- ▶ $\models_{M,v} \forall x.P$ iff for every $d \in D$ we have $\models_{M,(v,x \mapsto d)} P$
- ▶ $\models_{M,v} \exists x.P$ iff there exists a $d \in D$ such that $\models_{M,(v,x\mapsto d)} P$

Predicate Logic – Soundness & Completeness

Natural Deduction for Predicate Logic is

- sound, i.e., if $\vdash A$ then $\models A$, and
- complete, i.e., if $\models A$ then $\vdash A$

w.r.t. the model semantics of Predicate Logic

Consider the signature: $\langle \langle \rangle, \langle even^1, odd^1 \rangle \rangle$

Consider the signature: $\langle \langle \rangle, \langle even^1, odd^1 \rangle \rangle$ Let P be the formula $\forall x.even(x) \rightarrow (even(x) \land odd(x))$

Consider the signature: $\langle \langle \rangle, \langle even^1, odd^1 \rangle \rangle$ Let P be the formula $\forall x.even(x) \rightarrow (even(x) \land odd(x))$ Examples of models of P?

Consider the signature: $\langle \langle \rangle, \langle \texttt{even}^1, \texttt{odd}^1 \rangle \rangle$

Let P be the formula $\forall x.\mathtt{even}(x) \rightarrow (\mathtt{even}(x) \land \mathtt{odd}(x))$

Examples of models of P?

- $\blacktriangleright \ \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is even} \}, \{ \langle n \rangle \mid n \text{ is even} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is odd} \}, \{ \langle n \rangle \mid n \text{ is odd} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid \mathsf{True} \}, \{ \langle n \rangle \mid \mathsf{True} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is odd} \}, \{ \langle n \rangle \mid \mathsf{True} \} \rangle \rangle$
- $\bullet \langle \mathbb{N}, \langle \rangle, \langle \{ \langle 1 \rangle \}, \{ \langle 1 \rangle \} \rangle \rangle$
- $\bullet \langle \mathbb{N}, \langle \rangle, \langle \emptyset, \{ \langle 0 \rangle \} \rangle \rangle$

Consider the signature: $\langle \langle \rangle, \langle \texttt{even}^1, \texttt{odd}^1 \rangle \rangle$

Let P be the formula $\forall x.\mathtt{even}(x) \rightarrow (\mathtt{even}(x) \land \mathtt{odd}(x))$

Examples of models of P?

- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is even} \}, \{ \langle n \rangle \mid n \text{ is even} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is odd} \}, \{ \langle n \rangle \mid n \text{ is odd} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid \mathsf{True} \}, \{ \langle n \rangle \mid \mathsf{True} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is odd} \}, \{ \langle n \rangle \mid \mathsf{True} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle 1 \rangle \}, \{ \langle 1 \rangle \} \rangle \rangle$
- $\bullet \langle \mathbb{N}, \langle \rangle, \langle \emptyset, \{ \langle 0 \rangle \} \rangle \rangle$

Examples of models that are not models of P (i.e., models of $\neg P$)?
Predicate Logic – Semantics

Consider the signature: $\langle \langle \rangle, \langle \texttt{even}^1, \texttt{odd}^1 \rangle \rangle$

Let P be the formula $\forall x.\mathtt{even}(x) \rightarrow (\mathtt{even}(x) \land \mathtt{odd}(x))$

Examples of models of P?

- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is even} \}, \{ \langle n \rangle \mid n \text{ is even} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is odd} \}, \{ \langle n \rangle \mid n \text{ is odd} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid \mathsf{True} \}, \{ \langle n \rangle \mid \mathsf{True} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is odd} \}, \{ \langle n \rangle \mid \mathsf{True} \} \rangle \rangle$
- $\bullet \ \langle \mathbb{N}, \langle \rangle, \langle \{ \langle 1 \rangle \}, \{ \langle 1 \rangle \} \rangle \rangle$
- $\bullet \langle \mathbb{N}, \langle \rangle, \langle \emptyset, \{ \langle 0 \rangle \} \rangle \rangle$

Examples of models that are not models of P (i.e., models of $\neg P$)?

- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is even} \}, \{ \langle n \rangle \mid n \text{ is odd} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is odd} \}, \{ \langle n \rangle \mid n \text{ is even} \} \rangle \rangle$
- $\blacktriangleright \langle \mathbb{N}, \langle \rangle, \langle \{ \langle n \rangle \mid n \text{ is odd} \}, \emptyset \rangle \rangle$
- $\bullet \ \langle \mathbb{N}, \langle \rangle, \langle \{ \langle 0 \rangle \}, \emptyset \rangle \rangle$