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What did we cover in this module?

> Propositional logic
> Predicate logic
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Today

Revision

» Propositional Logic
> Syntax
> Natural Deduction proofs
> Semantics
> SAT

» Predicate Logic
> Syntax
> Natural Deduction proofs
> Semantics
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Propositional Logic — Syntax & Informal Semantics

Syntax:
P:=a|PAP|PvP|P—>P|—-P
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Propositional Logic — Syntax & Informal Semantics

Syntax:
P:=a|PAP|PvP|P—>P|—-P

Lower-case letters are atoms: p, ¢, r, etc.
Upper-case letters are (meta-)variables: P, ), R, etc.

Two special atoms:
» T which stands for True
» | which stands for False

We also introduced four connectives:
» P A @Q: we have a proof of both PP and @)
» P v @Q: we have a proof of at least one of P and ()
» P — @Q: if we have a proof of P then we have a proof of ()
» —P: stands for P — |
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Propositional Logic — Precedence & Associativity

Precedence: in decreasing order of precedence —, A, v, —.
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Propositional Logic — Precedence & Associativity

Precedence: in decreasing order of precedence —, A, v, —.

For example:
» =P v @ means (—P) v Q
» PAQv Rmeans (PAQ)Vv R
» PAQ—>QAPmeans (PAQ)— (QAP)

Associativity: all operators are right associative

For example:
» Pv Qv Rmeans Pv (Q v R).
» PAQA Rmeans P A (Q AR).
» P— (@ — R means P — (Q — R).

What are the parse trees of the above formulas? e



Propositional Logic — Constructive Natural Deduction

Constructive Natural Deduction rules:
— 1

A

Lo — B Ly A28 A4 Ly
A Ny B
— 1
Lo A4
- 1
A A, AvB A-C BoC
Av . v " C
A B AAB AAB

[A1] [AER] [AEL]
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Propositional Logic — Classical Reasoning

Classical Natural Deduction includes all the Constructive Natural
Deduction rules, plus:

— [LEM] —A [DNE]
Av —A A
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Propositional Logic — Natural Deduction

Typical proof patterns when doing proofs bottom-up:

Propositional logic:
» v: first [vE] then [vI]
> A: first [a1] then [vE]
» —: first [— 1] then [- E]
» —: first [-1] then [-E]
Predicate logic:
» J: first [3E] then [31]
> Y first [vi] then [vE]
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Propositional Logic — Example of a Constructive Proof

Prove (A — C) - —=C — —(A A B)
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Propositional Logic — Example of a Constructive Proof

Prove (A — C) - —=C — —(A A B)

AN
1 [AEL]
A—C
[— E] — 2
¢ — [-E]
1
3 [—
—(A A B)
2 [—> []
—-C — —(A A B)
1 [—» I]
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Propositional Logic — Example of a Classical Proof

Prove (A - (Bv (C)) > —-B——-AvC
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Propositional Logic — Example of a Classical Proof
Prove (A - (Bv (C)) > —-B——-AvC

B —-B

[-E]
1
1 — 3 Z [LE] -5
A— (Bv () A c
[— E] 4 [— I] 5 [— I]
B v C - C
[vE] — 6
[VIR] [viIL]
—-AvC —AvC
[LEM] — 3 [~ I] — 6 [~ I]
Av —-A A—>—-AvC —A—>—-AvC
[vE]
—-Av C
—_— 2 [ ]
—-B —> —Av C
1 [—>1I]

(A> (BvC) > —=B—>—=AvC
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Propositional Logic — Semantics

A valuation ¢ assigns T or F with each atom
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>

T iff both ¢(A) =T and ¢(B) =T
A— B) T iff 9(B) = T whenever ¢(A) =T

< *E%

>

11/24



Propositional Logic — Semantics

A valuation ¢ assigns T or F with each atom

A valuation is extended to all formulas as follows:
> ¢( ) =
P(L )
qﬁ( ) T iff either ¢(A) =T orp(B) =T
» $(A A B) =Tiff both 9(A) =T and ¢(B) =T
> &
P(—

>

A — B)=Tiff (B) = T whenever ¢(4) =T
A) = Tiff¢(A) = F

11/24



Propositional Logic — Semantics

A valuation ¢ assigns T or F with each atom
A valuation is extended to all formulas as follows:
> o(T) =T
)=F
v B) = T iff either p(A) =T or ¢(B) =T
B) = T iff both ¢(A) =T and ¢(B) =T
A — B) =Tiff (B) = T whenever ¢(A) =T
» p(—A)=Tiff (A) =F

> (L
> (A
> (A
> &

Satisfaction & validity:

11/24



Propositional Logic — Semantics

A valuation ¢ assigns T or F with each atom
A valuation is extended to all formulas as follows:
> o(T) =T
)=F
v B) = T iff either p(A) =T or ¢(B) =T
B) = T iff both ¢(A) =T and ¢(B) =T
A — B) =Tiff (B) = T whenever ¢(A) =T
» p(—A)=Tiff (A) =F

> (L
> B(A
> (A
> o

Satisfaction & validity:
» Given a valuation ¢, we say that ¢ satisfies A if p(A) =T

11/24



Propositional Logic — Semantics

A valuation ¢ assigns T or F with each atom
A valuation is extended to all formulas as follows:
> o(T) =T
)=F
v B) = T iff either p(A) =T or ¢(B) =T
B) = T iff both ¢(A) =T and ¢(B) =T
A — B) =Tiff (B) = T whenever ¢(A) =T
» p(—A)=Tiff (A) =F

> (L
> B(A
> (A
> o

Satisfaction & validity:
» Given a valuation ¢, we say that ¢ satisfies A if p(A) =T

» A is satisfiable if there exists a valuation ¢ on atomic
propositions such that ¢(A) =T

11/24



Propositional Logic — Semantics

A valuation ¢ assigns T or F with each atom
A valuation is extended to all formulas as follows:
> o(T) =T
)=F
v B) = T iff either p(A) =T or ¢(B) =T
B) = T iff both ¢(A) =T and ¢(B) =T
A — B) =Tiff (B) = T whenever ¢(A) =T
» p(—A)=Tiff (A) =F

> (L
> B(A
> (A
> o

Satisfaction & validity:
» Given a valuation ¢, we say that ¢ satisfies A if p(A) =T
» A is satisfiable if there exists a valuation ¢ on atomic
propositions such that ¢(A) =T
» Ais valid if ¢(A) = T for all possible valuations ¢
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Truth Tables

We can use truth tables to check whether propositions are valid:

|A[B][AvB]| |A[BJAAB
T[T] T T[T T
TIF| T T|F| F
FIT] T FIT| F
FIF|] F FIF| F
(PlQ[P—Q]

T[T] T Al -4
T|F F T[] F
FIT] T FI T
FIF] T

A proposition is (semantically) valid if the last column in its truth
table only contains T
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Propositional Logic — Validity

These techniques can be used to prove the validity of propositions:
» syntactic: a Natural Deduction proof
» semantical: a truth table with only T in the last column
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Propositional Logic — Validity

These techniques can be used to prove the validity of propositions:
» syntactic: a Natural Deduction proof
» semantical: a truth table with only T in the last column

We saw that:
» a formula A is provable in Natural Deduction
> iff A is semantically valid

This is true about the classical versions of these deduction systems

Therefore, if you manage to prove a formula A using Natural
Deduction then

» A is semantically valid by soundness
» A is satisfiable

» A is not falsifiable

Is (A — C)— —C — —(A A B) valid/satisfiable?
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Satisfiability of CNF formulas

Problem definition: Given a CNF formula can we set T or F value
to each variable/atom to satisfy the formula?
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Satisfiability of CNF formulas

Problem definition: Given a CNF formula can we set T or F value
to each variable/atom to satisfy the formula?

» Example: Consider the formula (A v —B) A (C' v B)
» Is it satisfiable?

» Satisfiable by setting A=T, B=Fand C =T

» Known as CNF Satisfiability or simply SAT
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Predicate Logic — Syntax

The syntax of predicate logic is defined by the following grammar:

t = x| f(t,...., 1)
P = pit,...,t)|-P|PAP|PvP|P—P|VYz.P|3x.P
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The syntax of predicate logic is defined by the following grammar:

t = x| ft,..., 1)
P = pit,...,t)|-P|PAP|PvP|P—P|VYz.P|3x.P

where:
> x ranges over variables
> f ranges over function symbols

» f(t1,...,t,) is a well-formed term only if [ has arity n
> p ranges over predicate symbols
» p(ty,...,t,) is a well-formed formula only if p has arity n

v

T and | are predicate symbols of arity 0

The pair of a collection of function symbols, and a collection of
predicate symbols, along with their arities, is called a signature.

The scope of a quantifier extends as far right as possible. E.g.,
P AYz.p(x) v q(z)is read as P A V. (p(x) v q(x))
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Predicate Logic — Substitution

Substitution is defined recursively on terms and formulas:
P[z\t] substitute all the free occurrences of x in P with ¢.
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Substitution is defined recursively on terms and formulas:
P[z\t] substitute all the free occurrences of x in P with ¢.

t

f(taf2\t], ... tn[2\t])
p(ta[z\t], .. ., tn[z\t])
—Plz\]

Pi[z\t] A Pa[z\t]
Pi[z\t] v Pa[z\t]
Pi[a\t] > Palo\]
Va.P

Jz. P

Vy.Plz\t], if y ¢ £v(t)
Jy.Plz\t], if y ¢ £v(t)
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Predicate Logic — Substitution

Substitution is defined recursively on terms and formulas:
P[z\t] substitute all the free occurrences of x in P with ¢.

t
Fa[z\t], ... tn[2\E])
p(t1 [x\t]v costn [l’\t])

—P)[z\t] —Plz\]
Py A P)[z\t] Pi[z\t] A Pa[z\t]
)[z\t] Pifz\t] v Pox\t]
t

P — Po)[z\i] Piz\t] — Pa[z\t]
Va.P)[x\t] Va.P

Jx.P)[z\t] Jx.P

Vy.P)[z\t] Vy.Plz\t], if y ¢ £v(t)
(3y-P)[\] Sy-Pla\, if y ¢ £v(t)

The additional conditions ensure that free variables do not get
captured.

These conditions can always be met by silently renaming
bound variables before substituting.
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Predicate Logic — Constructive Natural Deduction

Natural Deduction rules for the propositional connectives:
—1

A
Loum = B Loy AZBA
A T A— B B
— 1
S A A g
“A 1
A A AvB A—>C B—C
[vIr] [vIg] [vE]
Av Bv A C
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Predicate Logic — Constructive Natural Deduction

Natural Deduction rules for quantifiers:

Plz\y]
Plz\y] Va.P Pla\t] P Q
vI VE [ — 135
V. P Plz\t] Jx.P Q
Condition:

» for [VI]: y must not be free in any not-yet-discharged hypothesis or in
Yz.P

» for [VE]: fv(t) must not clash with bv(P)
» for [3I]: £v(t) must not clash with bv(P)

» for [JE]: y must not be free in @) or in not-yet-discharged hypotheses or
in dx. P
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Predicate Logic — Classical Reasoning

Classical Natural Deduction for Predicate Logic
Add the rules:

——A
[LEM] ——— [DNE]

Av —A
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Predicate Logic — Example of a Proof

Prove (S1) — (S2) — Vz.even(x) — —odd(succ(succ(z))) where
S1 = Vz.even(x) — even(succ(succ(x))) and
Sy = Vz.0odd(z) — —even(x)
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Predicate Logic — Example of a Proof

Prove (S1) — (S2) — Vz.even(x) — —odd(succ(succ(z))) where
S = Vx.even(z) — even(succ(succ(x))) and
Sy = Vz.0odd(z) — —even(x)

— 1 — 2
S1 Sa
——— [VE] — 3 VE] ——— 4
E(z) — E(s(s())) E(x) 0(s(s(2))) — —E(s(s(x))) 0(s(s(2)))
E(s(s())) —E(s(s(2)))
n -
— 4[]
~0(s(5(x)))
T 31
E(z) — —0(s(s(x)))
VI]
Vz.E(x) — —0(s(s(x)))
2 [ I]

(82) — Va.E(z) — —0(s(s(2))
1 [—1I]

(S51) — (S2) — Vx.E(z) — —0(s(s(x)))

Where O stands for odd; E stands for even; and s stands for succ
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Predicate Logic — Semantics

Models: a model provides the interpretation of all symbols
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Predicate Logic — Semantics

Models: a model provides the interpretation of all symbols

. . e L 1 ;
Given a signature ((f{, ..., fon {plt, ... plm))
» of function symbols f; of arity k;, for 1 <i<n
» of predicate symbols p; of arity j;, for 1 <i<m

A model is a structure (D, (Fy,.... Fp 0. {Rpy,. .- Rp,.))
» of a non-empty domain D
> interpretations F, for function symbols f;
> interpretations 72, for function symbols p;

Models of predicate logic replace truth assignments for
propositional logic

Variable valuations:
» a partial function v
» that maps variables to D
> i.e., a mapping of the form x| — dy,....x, — d,
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Predicate Logic — Semantics

Given a model M with domain D and a variable valuation v:
» [t]M gives meaning to the term ¢ w.r.t. M and v
> =170 P gives meaning to the formula P w.r.t. M and v
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Predicate Logic — Semantics

Given a model M with domain D and a variable valuation v:
> [t]M gives meaning to the term ¢ w.r.t. M and v
> =170 P gives meaning to the formula P w.r.t. M and v
Meaning of terms:
> [} = v(2)
> [ft et = Fr DY D)
Meaning of formulas:
» Eue |and —Ear, L
> e Dt - t) M, [E]M) e R,
» Ep P iff —Ear, P
» v P AQIffFEy, Pand Eay Q
» Eume PV Qiff By PorEy, Q
> Emp P — Q iff EMuw () whenever EMuo P
> E=ar V. P iff for every d € D we have = M, (v,2d) P
> = Jo. P iff there exists a d € D such that =y, 4na) P
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Predicate Logic — Soundness & Completeness

Natural Deduction for Predicate Logic is
» sound, i.e., if = A then = A, and
» complete, i.e., if = A then - A

w.r.t. the model semantics of Predicate Logic

23/24



Predicate Logic — Semantics

Consider the signature: ({), (even!, odd!))
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Predicate Logic — Semantics

Consider the signature: ({),(even', odd!))
Let P be the formula Vz.even(z) — (even(z) A odd(x))

Examples of models of P?

» (N, O, {{{n) | nis even}, {(n) | n is even}))
> (N, O, {{{n) [ nis odd}, {(n) [ n is odd}))
> (N, O, {{{ny | True}, {<n) | True}))

> (N, O, {{{n) [ nis odd}, {(n) | True}))

> (N, O, KDY W)

> (N, O, 0, {<0)}))
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Examples of models of P?

» (N, O, {{{n) | nis even}, {(n) | n is even}))
> (N, O, {{{n) [ nis odd}, {(n) [ n is odd}))
> (N, O, {{{ny | True}, {<n) | True}))

> (N, O, {{{n) [ nis odd}, {(n) | True}))

> (N, O, KDY W)

> (N, O, 0, {<0)}))

Examples of models that are not models of P (i.e., models of —P)?
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Predicate Logic — Semantics

Consider the signature: ({),(even', odd!))
Let P be the formula Vz.even(z) — (even(z) A odd(x))

Examples of models of P?

» (N, O, {{{n) | nis even}, {(n) | n is even}))
> (N, O, {{{n) [ nis odd}, {(n) [ n is odd}))
> (N, O, {{{ny | True}, {<n) | True}))

> (N, O, {{{n) [ nis odd}, {(n) | True}))

> (N, O, KDY W)

> (N, O, 0, {<0)}))

Examples of models that are not models of P (i.e., models of —P)?

> (N, O, {{ny | nis even}, {(n) | n is odd}))
> (N, O, {{(ny | nis odd}, {(n) | n is even}))
> (N, O, () [ is odd}, 0))

> (N, OO 0))
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