Mathematical and Logical Foundations of Computer Science Logic Cheat Sheet

University of Birmingham

1 Propositional Logic

1.1 Syntax

The syntax of propositional logic formulas is defined by the following grammar, where a ranges over atomic propositions (atoms):

 $P ::= a \mid P \land P \mid P \lor P \mid P \to P \mid \neg P$

There are two special atoms: \top which stands for True, and \bot which stands for False. We use the following precedence and associativity rules:

- Precedence: in decreasing order of precedence $\neg, \land, \lor, \rightarrow$.
- Associativity: all operators are right associative

1.2 Constructive Natural Deduction

$$\frac{\overline{A}}{I}^{I} \xrightarrow{\vdots} \\
\frac{\overline{A}}{I} \xrightarrow{[]} E = \overline{T} \quad [TI] \qquad \frac{B}{A \to B} \quad 1 \quad [\to I] \qquad \frac{A \to B \quad A}{B} \quad [\to E]$$

$$\frac{\overline{A}}{I} \xrightarrow{1} \\
\frac{\overline{A}}{\Box} \xrightarrow{1} \\
\frac{\overline{A}}{\Box} \xrightarrow{1} \quad [\neg I] \qquad \frac{\neg A \quad A}{\bot} \quad [\neg E]$$

$$\frac{\overline{A}}{A \lor B} \quad [\lor I_{L}] \qquad \frac{A}{B \lor A} \quad [\lor I_{R}] \qquad \frac{A \lor B \quad A \to C \quad B \to C}{C} \quad [\lor E]$$

$$\frac{\overline{A}}{A \land B} \quad [\land I] \qquad \frac{A \land B}{B} \quad [\land E_{R}] \qquad \frac{A \land B}{A} \quad [\land E_{L}]$$

1.3 Classical Natural Deduction

It includes all the Constructive Natural Deduction rules, plus:

$$\frac{1}{A \vee \neg A} \quad [LEM] \qquad \frac{\neg \neg A}{A} \quad [DNE]$$

1.4 Truth Tables

A	B	$A \lor B$	A	B	$A \wedge B$	A	B	$A \to B$					
Т	Т	Т	Т	Т	Т	Т	Т	Т	_	A	$\neg A$	T	
Т	F	Т	Т	F	F	Т	\mathbf{F}	\mathbf{F}		Γ	\mathbf{F}	Т	F
\mathbf{F}	\mathbf{T}	Т	\mathbf{F}	Т	F	\mathbf{F}	$ \mathbf{T} $	Т		$\mathbf{F} \mid$	Т	1	Ľ
F	F	\mathbf{F}	F	F	F	F	F	Т					

2 Predicate Logic

2.1 Syntax

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{lll} t & ::= & x \mid f(t, \dots, t) \\ P & ::= & p(t, \dots, t) \mid \neg P \mid P \land P \mid P \lor P \mid P \rightarrow P \mid \forall x.P \mid \exists x.P \end{array}$$

There are two special predicate symbols of arity 0: \top which stands for True, and \perp which stands for False.

2.2 Natural Deduction

The Natural Deduction rules for Predicate Logic include all Proposition Logic rules plus the following rules:

$$\frac{P[x \setminus y]}{\forall x.P} \quad [\forall I] \qquad \frac{\forall x.P}{P[x \setminus t]} \quad [\forall E] \qquad \frac{P[x \setminus t]}{\exists x.P} \quad [\exists I] \qquad \frac{\exists x.P \quad Q}{Q} \quad 1 \quad [\exists E]$$

Side conditions:

- for $[\forall I]$: y must not be free in any not-yet-discharged hypothesis or in $\forall x.P$
- for $[\forall E]$: fv(t) must not clash with bv(P)
- for $[\exists I]$: fv(t) must not clash with bv(P)
- for $[\exists E]: y$ must not be free in Q or in not-yet-discharged hypotheses or in $\exists x. P$

2.3 Semantics

Given a signature: $\langle \langle f_1^{k_1}, \dots, f_n^{k_n} \rangle, \langle p_1^{j_1}, \dots, p_m^{j_m} \rangle \rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model M is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- 1. of a non-empty domain D
- 2. interpretations $\mathcal{F}_{f_i} \in D^{k_i} \to D$ for function symbols f_i
- 3. interpretations $\mathcal{R}_{p_i} \subseteq D^{j_i}$ for predicate symbols p_i

A variable valuation v is a partial function from variables to D

Given a model M and a variable valuation v, we assign meaning to terms and formulas as follows:

• Meaning of terms:

$$- [x]_{v}^{M} = v(x)$$

$$- \llbracket f(t_1, \dots, t_n) \rrbracket_v^M = \mathcal{F}_f(\langle \llbracket t_1 \rrbracket_v^M, \dots, \llbracket t_n \rrbracket_v^M \rangle)$$

• Meaning of formulas:

- $-\models_{M,v} \top$ is true
- $-\models_{M,v} \perp$ is false
- $-\models_{M,v} p(t_1,\ldots,t_n) \text{ iff } \langle \llbracket t_1 \rrbracket_v^M,\ldots,\llbracket t_n \rrbracket_v^M \rangle \in \mathcal{R}_p$
- $-\models_{M,v} \neg P \text{ iff } \neg\models_{M,v} P$
- $\models_{M,v} P \land Q \text{ iff } \vDash_{M,v} P \text{ and } \vDash_{M,v} Q$
- $-\models_{M,v} P \lor Q$ iff $\models_{M,v} P$ or $\models_{M,v} Q$
- $-\models_{M,v} P \to Q$ iff $\models_{M,v} Q$ whenever $\models_{M,v} P$
- $-\models_{M,v} \forall x.P$ iff for every $d \in D$ we have $\models_{M,(v,x\mapsto d)} P$
- $-\models_{M,v} \exists x.P$ iff there exists a $d \in D$ such that $\models_{M,(v,x \mapsto d)} P$