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Today

§ What is logic?
§ Why study logic?
§ This module
§ Basic concepts
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What is logic?

An old science developed in many cultures, most notably in Greece
by Aristotle in 350 B.C.

In his Organon, Aristotle provided rules to conduct logical reasoning,
and derive correct statements.

As such, logic provides reasoning techniques that enable deriving
knowledge in a systematic way.

In the 19th century, mathematicians such as Boole and Frege
further revolutionized the field of logic, and their contributions led
to modern mathematical logic, which we will study in this module.
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What is logic?

What sort of reasoning can logic help us with?

A puzzle:
§ There are 4 cards, each with a letter on one side and a number

on the other
§ Rule: “every card with a vowel has an even number on the

other side”

Q E 6 3

§ Which card(s) must you turn over in order to check this rule?
§ E and 3
§ Why do we not need to turn over Q and 6?
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What is logic?

Another puzzle:
§ There are 4 cards, each with name of a drink on one side and

an age on the other
§ Rule: “if the age is under 18, then the drink on the other side

of the card is non-alcoholic”

Juice 35 Beer 16

§ Which card(s) must you turn over in order to check this rule?
§ Beer and 16
§ Why do we not need to turn over Juice and 35?
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What is logic?

Reasoning techniques for deriving knowledge

An informal argument:
§ All men are mortal
§ Socrates is a man
§ Therefore, Socrates is mortal

In what is called Predicate Logic:
§ @x.Manpxq Ñ Mortalpxq
§ Socrates is a man, i.e., ManpSocratesq

§ Hence, MortalpSocratesq
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What is logic?

Logic is about formalising knowledge and reasoning

in a precise, unambiguous, rigorous way
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Today

§ What is logic?
§ Why study logic?
§ This module
§ Basic concepts
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Why study logic?

§ Logic is fundamental in computer science
§ also in philosophy, mathematics, psychology, ...

§ Logic in computer science:
§ understanding/modelling, formalisation/rigour,

correctness/proof, computation/automation, ..
§ Logic plays a key role in many areas of computer science:

§ correctness and formal verification
§ self-driving cars

§ theory of computation
§ what can be computed? how fast?

§ SAT solvers
§ solving “every hard” problem

§ AI, databases, etc ...
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Today plan

§ What is logic?
§ Why study logic?
§ This module
§ Basic concepts
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Syllabus of the logic part of this module

§ Propositional logic
§ syntax
§ proofs (natural deduction)
§ semantics, truth tables
§ satisfiability

§ First order logic (predicate calculus)
§ syntax
§ proofs (natural deduction)
§ semantics
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Learning outcomes

§ Understand and apply algorithms for key problems in logic such
as satisfiability.

§ Write formal proofs for propositional and predicate logic
§ Apply mathematical and logical techniques to solve a problem

within a computer science setting
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Organization

§ lectures: optional pre-recorded lectures & on-campus lectures
§ tutorials
§ assessments
§ office hours
§ resources:

§ Canvas page
§ Further reading:

§ http:
//leanprover.github.io/logic_and_proof/index.html

§ https://www.paultaylor.eu/stable/prot.pdf
§ https://research.tue.nl/en/publications/

logical-reasoning-a-first-course
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Today

§ What is logic?
§ Why study logic?
§ This module
§ Basic concepts
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Basic concepts: Propositions

A proposition is a sentence which states a fact
i.e. a statement that can (in principle) be true or false

Example sentences:
§ Birmingham is north of London

proposition, and true
§ 8ˆ 7 “ 42

proposition, and false
§ Please mind the gap

not a proposition!
§ Every even natural number ą 2 is the sum of two primes

proposition
Goldbach Conjecture: unknown whether it is true or false!

§ Is black the opposite of white?
not a proposition!
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Basic concepts: Arguments

An argument is a list of propositions
§ the last of which is called the conclusion
§ and the others are called premises

Example: 2 premises and 1 conclusion
1. Premise 1: If there is smoke, then there is a fire
2. Premise 2: There is no fire
3. Conclusion: Therefore, there is no smoke
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Basic concepts: Validity of Arguments

An argument is valid if (and only if), whenever the premises are
true, then so is the conclusion

Is the argument from the previous slide valid?

1. Premise 1: If there is smoke, then there is a fire
2. Premise 2: There is no fire
3. Conclusion: Therefore, there is no smoke

Yes, it is valid!

If an argument is not valid, then it is invalid
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Basic concepts: Example Arguments

Is this valid?

1. If John is at home, then his television is on.
2. His television is not on.
3. Therefore, John is not at home.

Valid

Is this valid?

1. You can eat a burger or pasta.
2. You ate a burger.
3. Therefore, you did not eat pasta.

Invalid
Why not both?
OR in English is usually exclusive
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Basic concepts: More Example Arguments

Is this valid? Invalid

1. If the control software crashes, then the car’s brakes will fail.
2. The car’s brakes failed.
3. Therefore, the control software crashed.

Is this valid? Invalid (for the same reason as above)

1. If (2+2=5) then (3+3=6).
2. 3+3=6.
3. Therefore, 2+2=5.

More generally (with symbols) this argument is not valid (we saw 2
counterexamples):

1. If P then Q.
2. Q.
3. Therefore, P . 19/21



Basic concepts: More Example Arguments

Is this valid? Invalid

1. If the control software crashes, then the car’s brakes will fail.
2. The control software did not crash.
3. Therefore, the car’s brakes did not fail.

Is this valid? Invalid (for the same reason as above)

1. If (2+2=5) then (3+3=6).
2. 2+2 is not 5.
3. Therefore, 3+3 is not 6.

More generally (with symbols) this argument is not valid (we saw 2
counterexamples):

1. If P then Q.
2. ␣P .
3. Therefore, ␣Q. 20/21



Conclusion

What did we cover today?
§ what and why logic
§ organization of the logic part of the module
§ basic logic concepts

Next time?
§ Symbolic logic
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic

2/25



Today

We will introduce some useful concepts to deal with logical systems.
Some of them will make more sense as we experience them during
the course of this module.

§ Symbolic logic
§ Grammars
§ (Meta)variables
§ Axiom schemata
§ Substitution
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Symbolic Logics

Symbolic logics are formal languages that allow conducting logical
reasoning through the manipulation of symbols.

“Symbolic logic is the development of the most general
principles of rational procedure, in ideographic symbols, and
in a form which exhibits the connection of these principles
one with another.” (Irving Lewis in A Survey of Symbolic
Logic)

Pioneered for example by Leibniz, Boole, Frege, etc.

For example:
§ Propositional logic
§ Predicate logic
§ Higher-order logic
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Grammars - BNFs

Two important aspects of a language are:
§ its syntax describing the well-formed sequences of symbols

denoting objects of the language;
§ and its semantics assigning meaning to those symbols.

This lecture focuses on syntax.

The syntax of a language is defined through a grammar.

In particular, the language of a symbolic logic is defined by a
grammar that allows deriving formulas from collections of symbols
(we will see an example in a few slides).
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Grammars - BNFs

The grammar of such a language is often defined using a Backus
Naur Form (BNF). BNFs allow defining context-free grammars
(i.e., where production rules are context independent). They are
collections of rules of the form:

lhs ::“ rhs1 | ¨ ¨ ¨ | rhsn

Meaning: this rule means that the left-hand-side lhs (a
non-terminal symbol) can expand to any of the forms rhs1 to rhsn
on the right-hand-side.
Each rhsi is a sequence of non-terminal and terminal symbols.

The arity of a terminal symbol is the number of arguments it takes.

The Fixity of a terminal symbol is the place where it occurs w.r.t.
its arguments: infix if it occurs in-between its arguments, prefix if it
occurs before, and postfix if it occurs after.
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Grammars - BNF example

Example of a BNF for (some) arithmetic expressions:

exp ::“ num | exp ` exp | exp ˆ exp

where a numeral num is a sequence of digits. Here exp is a
non-terminal symbol and `, ˆ, 0 , 1, etc., are terminal symbols.

Arity & fixity:
§ 0 , 1, etc. are nullary (arity 0) operators

(they are called constants).
§ ` and ˆ are binary (arity 2) infix operators

Derivations:

exp ÞÑ exp ` exp ÞÑ 1` exp ÞÑ 1` 2
exp ÞÑ exp ˆ exp ÞÑ exp ˆ 0 ÞÑ 2ˆ 0
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How to extend this language to allow for conditional expressions?

exp ::“ num | exp ` exp | exp ˆ exp | if b then exp else exp
b ::“ true | false | b & b | b } b

Fixity: all the above operators are infix.
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Grammars - BNF example

Example of a BNF for propositional logic formulas:

P ::“ a | P Ñ P | P _ P | P ^ P | ␣P

where a ranges over a set of atomic propositions (e.g., “it is raining”,
or “it is sunny”). Here P is a non-terminal symbol and ^, _, Ñ,
and ␣, as well as the atomic propositions, are terminal symbols.

Arity & Fixity: ^, _, Ñ are binary infix operators, ␣ is a unary
(arity 1) prefix operator

Example: let s stand for “it is sunny”, and r for “it is rainy”

Derivation:

P ÞÑ P _ P ÞÑ r _ P ÞÑ r _␣P ÞÑ r _␣s
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Grammars - abstract syntax trees

An expression derived from a BNF grammar can then be seen as a
tree, called an abstract syntax tree.

For example, given the grammar:

exp ::“ num | exp ` exp | exp ˆ exp

an abstract syntax tree corresponding to 0` 1` 2 is:

+

2+

10
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Grammars - associativity

Note the ambiguity in our example: 0` 1` 2.
Does it stand for p0` 1q ` 2 or 0` p1` 2q?
We need to define the associativity of the terminal symbols to
avoid ambiguities.

§ left associativity: p0` 1q ` 2
§ right associativity: 0` p1` 2q

We will consider the first but we will sometimes use parentheses to
avoid ambiguities.

Those have different abstract syntax trees:
+

2+

10

+

+

21

0
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Grammars - precedence

What about: 0` 1ˆ 2? This is again ambiguous.
Does it stand for p0` 1q ˆ 2 or 0` p1ˆ 2q?
We need to define the precedence of the terminal symbols to avoid
ambiguities.

§ ˆ has higher precedence: 0` p1ˆ 2q
§ ` has higher precedence: p0` 1q ˆ 2

We will consider the first.

Those have different abstract syntax trees:

+

ˆ

21

0

ˆ

2+

10
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Grammars - example

What is the abstract syntax tree for?

if true then 1` 2 else 2` 3

Again this is ambiguous. Without knowing which operator has
precedence over the other, it could be either of the two:

if true then p1` 2q else p2` 3q

if then else

+

32

+

21

true

pif true then 1` 2 else 2q ` 3

+

3if then else

2+

21

true
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Grammars - associativity, precedence, parentheses

To avoid ambiguities:
§ define the associativity of symbols
§ define the precedence between symbols
§ use parentheses to avoid ambiguities or for clarity

Parentheses are sometimes necessary:
§ using left associativity 0` 1` 2 stands for p0` 1q ` 2
§ we need parentheses to express 0` p1` 2q
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Grammars - example

Given the grammar:

P ::“ a | P Ñ P | P _ P | P ^ P | ␣P

what is the abstract syntax tree for p␣P q ^ pQ_Rq?

^

_

RQ

␣

P
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(Meta)variables

Some of these concepts will start making more sense when we
come to experience them during the course of this module

We sometimes want to write down expressions/formulas such as
exp ` exp or P Ñ P, where exp and P are non-terminals.

In that case exp and P act as variables that can range over all
possible expressions/formulas.

Such variables are typically called, metavariables or schematic
variables, and act as placeholders for any element derivable from a
given grammar rule.

For example, we might write P Ñ P to mean that P implies P
whatever the proposition P is: “it is rainy” Ñ “it is rainy” is true;
“it is sunny” Ñ “it is sunny” is true; etc.
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(Meta)variables

Notation. Given the grammar:

exp ::“ num | exp ` exp | exp ˆ exp

one typically allows exp, exp0, exp1, . . . , exp1, exp2, . . . , as
variables ranging over all possible arithmetic expressions derivable
using the above rule.

Technical details:
§ The expressions of the language captured by the above

grammar, has all the ones that cannot be derived further, i.e.,
that do not contain non-terminal symbols.

§ exp` exp is not part of this language but is useful to capture a
collection of expressions.

§ Why is it called a “metavariable”? A metavariable is a variable
within the language, called the metatheory, used to describe
and study a theory at hand.
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(Meta)variables

For example, let us consider the following grammar:

exp ::“ num | exp ` exp | exp ˆ exp
eq ::“ exp “ exp

where equalities are used to state that two expressions are equal.

This defines the syntax of a simple symbolic logic to reason about
arithmetic expressions.

We use this language to state laws of arithmetic by describing what
equalities hold using variables that act as placeholders for any
possible expressions.

Some equalities are assumed to hold in our simple logic through
axioms, such as 0` 0 “ 0, 1` 0 “ 1, 2` 0 “ 2, etc.
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Axiom schemata

For example, as part of a “number theory” one may want to
assume that the following equality holds:

exp ` 0 “ exp
A standard law of arithmetic that states: 0 is an additive identity.

It stands for an infinite number of axioms, which can be obtained by
instantiating the variable exp with any arithmetic expression. This
is called an axiom schemata.

For example, the following equality is such an instance:
1` 0 “ 1

Other examples of instances?
§ 2` 0 “ 2
§ p1` 2q ` 0 “ 1` 2
§ etc.
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Axiom schemata

As another example, take again propositional logic, whose syntax is:

P ::“ a | P Ñ P | P _ P | P ^ P | ␣P

Variables are useful to state axioms of the logic.
For example, we can state:

pP ^Qq Ñ P

using the variables P and Q.

By replacing P by “2 is prime” and Q by “2 is even”, we can obtain
the following instance of this formula:

p2 is prime^ 2 is evenq Ñ 2 is prime
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Substitution

How do we obtain the equality:

1` 0 “ 1

from the axiom schema:

exp ` 0 “ exp

This is done by instantiating the schema, i.e., by substituting the
variable exp with an arithmetic expression. For example here, we
substituted exp with 1.

A substitution is a mapping (e.g., a key/value map), that maps
metavariables to arithmetic expressions.
The substitution operation is the operation that replaces all
occurrences of the keys by the corresponding values (the 1st
key/value pair is considered if a key occurs more than once).
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Substitution

We write k0zv0, . . . , knzvn for the substitution that maps ki to vi

for i P t0, . . . , nu.

For example:
§ The substitution expz1 maps exp to 1.
§ exp1 z0, exp2 z1 maps exp1 to 0 and exp2 to 1.
§ exp1 z0, exp2 z1, exp1 z1 also maps exp1 to 0 and exp2 to 1.

The substitution operation, written eqrss, takes an equality eq and a
substitution s, and replaces all occurrences of the keys of s by the
corresponding values in eq.

For example: pexp ` 0 “ expqrexpz1s returns 1` 0 “ 1.
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Substitution - formally

Formally, the substitution operation is defined recursively on the
syntactic forms they are applied to.

For example, the substitution operation computes as follows on
arithmetic expressions:

numrss “ num
pexp1 ` exp2qrss “ exp1rss ` exp2rss
pexp1 ˆ exp2qrss “ exp1rss ˆ exp2rss
pexp1 “ exp2qrss “ exp1rss “ exp2rss
and as we allow variables in expressions:
vrss “ v, if v is not a key of s
vrss “ e, if s maps v to e
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Substitution - further examples

Consider the following commutativity schema:

exp1 ` exp2 “ exp2 ` exp1

What does pexp1 ` exp2 “ exp2 ` exp1qrexpz1s return?
exp1 ` exp2 “ exp2 ` exp1

What does pexp1 ` exp2 “ exp2 ` exp1qrexp1z1s return?
1` exp2 “ exp2 ` 1

What does pexp1 ` exp2 “ exp2 ` exp1qrexp1z1, exp2z2s return?
1` 2 “ 2` 1
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Conclusion

What did we cover today?
§ A formal language such as a symbolic logic has a syntax

captured by a grammar (e.g., a BNF).
§ (Meta)variables are used to capture collections of axioms (as

axiom schemata) of symbolic logics.
§ Substitution is used to derive instances of axiom schemata.

Next time?
§ Propositional logic - Syntax
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ Propositional logic
§ Syntax of the language
§ Informal semantics
§ Simple proofs
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Propositions - informal presentation

Propositional logic is a symbolic logic to reason about logical
statements called propositions that can (in principle) be true or
false.

Propositions are built by combining atomic propositions using the
and, or, not, and implies logical connectives.

Are these examples of propositions?
§ Birmingham is north of London Yes
§ Is Birmingham north of London? No
§ 8ˆ 7 “ 42 Yes
§ Every even natural number ą 2 is the sum of two primes Yes
§ Please mind the gap No
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Arguments - informal presentation

Let an argument be a list of propositions, the last of which is called
the conclusion and the others are called premises.

An argument is valid if and only if (iff) whenever the premises are
true, then so is the conclusion

In propositional logic true propositions can be derived from other
true propositions through the use of derivation rules.

For example:
1. If John is at home, then his television is on.
2. His television is not on.
3. Therefore, John is not at home.

Valid? Yes
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Arguments - informal presentation

More examples:

1. You can eat a burger or pasta.
2. You ate a burger.
3. Therefore, you did not eat pasta.

Valid? No Because you could eat both. In propositional logic, or is not
exclusive as it is often the case in English.

1. If the control software crashes, then the car’s brakes will fail.
2. The car’s brakes failed.
3. Therefore, the control software crashed.

valid? No The car’s brakes could have failed for another reason.
1. If the control software crashes, then the car’s brakes will fail.
2. The control software did not crash.
3. Therefore, the car’s brakes did not fail.

valid? No The car’s brakes could have failed for another reason.
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Formalizing logical statements and arguments

We want to formalise such statements and arguments.

We will take a symbolic approach.

It will allow us proving the (in)validity of statements generally.

Advantages of formal symbolic language over natural languages are:
§ unambiguous
§ more concise
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Propositional Logic

Symbols:
§ atomic propositions (true/false atomic statements)
§ combined using logical connectives

Atomic propositions (atoms)
§ propositions that cannot be broken into smaller parts
§ Let p, q, r, . . . be atomic propositions
§ two special atoms: J stands for True, K stands for False

Logical Connectives
§ conjunction: ^ (and)
§ disjunction: _ (or)
§ implication: Ñ (if .... then / implies)
§ negation: ␣ (not) — can be defined using Ñ and K
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Propositions - informal examples

What are the atomic propositions and connectives?
§ The car’s brakes failed

an atomic proposition
§ The control software crashed and the car’s brakes failed

a conjunction of 2 atomic propositions
§ If the control software crashes, then the car’s brakes will fail

an implication connecting 2 atomic propositions
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Propositional logic

The syntax of propositional logic formulas (called propositions) is
defined by the following grammar:

P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

where a ranges over atomic propositions.

Atomic propositions are formulas.

If P and Q are formulas, then
§ P ^Q is a formula
§ P _Q is a formula
§ P Ñ Q is a formula
§ ␣P is a formula

Those are called compound formulas.

Example of a compound formula: ␣p^ q ^ q ^␣r.
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Connectives - informal semantics

Conjunction: P ^Q, i.e., P and Q

§ true if both individual propositions P and Q are true

Disjunction: P _Q, i.e., P or Q

§ true if one or both individual propositions P and Q are true
§ also sometimes called “inclusive or”
§ Note: Or in English is often an “exclusive or” (i.e. where one

or the other is true, but not both)
§ e.g., “Your mark will be pass or fail”
§ but logical disjunction is always defined as above
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Connectives - informal semantics

Implication: P Ñ Q, i.e., P implies Q

§ means: if P is true then Q must be true too
§ if P is false, we can conclude nothing about Q

§ P is the antecedent, Q is the consequent

Negation: ␣P , i.e., not P

§ it can be defined as P ÑK

§ if P is true, then K (False)
§ true iff P is false
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Avoiding ambiguities

P ^Q_R
§ Is this a well-formed formula? Yes
§ what does it mean?
§ pP ^Qq _R?
§ P ^ pQ_Rq?
§ We don’t know.

In general use parentheses to avoid ambiguities.
Use either pP ^Qq _R or P ^ pQ_Rq.

Precedence: in decreasing order of precedence ␣,^,_,Ñ.
For example, ␣P _Q means p␣P q _Q.

Associativity: all operators are right associative
For example, P _Q_R means P _ pQ_Rq.

However use parentheses around compound formulas for clarity.
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Parse Trees

Parentheses help clarify how formulas are derived given the
propositional logic’s grammar:

P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

The parse tree for pP ^Qq _R is:
_

R^

QP

while the parse tree for P ^ pQ_Rq is:
^

_

RQ

P

Leaves are atomic propositions and the other nodes are connectives.
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Parse Trees

What it the parse tree for: p␣P ^Qq Ñ p␣P ^ pQ_␣Rqq?

Ñ

^

_

␣

R

Q

␣

P

^

Q␣

P
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Scope and Main connective

Scope of a connective
§ The connective itself, plus what it connects
§ That is, the sub-tree of the parse tree rooted at the connective
§ The scope of ^ in pP ^Qq _R is P ^Q

Main connective of a formula
§ The connective whose scope is the whole formula
§ That is, the root node of the parse tree
§ The main connective of pP ^Qq _R is _
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Arguments in Propositional Logic

Example argument
1. If John is at home, then his television is on
2. His television is not on
3. Therefore, John is not at home

Identify atomic propositions:
§ p ““John is at home”
§ q ““John’s television is on”

How do we write this argument in propositional logic?
§ Premise 1: p Ñ q

§ Premise 2: ␣q

§ Conclusion: ␣p
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Arguments in Propositional Logic

Example argument
§ Premise 1: p Ñ q

§ Premise 2: ␣q

§ Conclusion: ␣p

Notation: written as a sequent
§ p Ñ q,␣q $ ␣p

§ i.e., set of premises separated by commas, then a turnstile
followed by the conclusion.

§ Recall that premises and conclusions are both formulas.
§ A sequent is valid if the argument has been proven, i.e., if the

conclusion is true assuming that the premises are true.
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Proofs in Propositional Logic

For formal proofs we need two things
1. A formal language

§ for representing propositions, arguments
§ here we are using propositional logic

2. A proof theory
§ to prove (“infer”, “deduce”) whether an argument is valid
§ we’ll see several different approaches in this module
§ for now (next few lectures): Natural Deduction

19/25



Natural Deduction

Natural Deduction
§ “natural” style of constructing a proof (like a human would)
§ syntactic (rather than semantic) proof method
§ proofs are constructed by applying inference rules

Basic idea to prove an argument is valid:
§ start with the premises (we can assume these are true)
§ repeatedly apply inference rules (which “preserve truth”)
§ until we have inferred the conclusion
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What are inference rules?

Inference rules are the tools we have/are allowed to use

Example of an inference rule:

A B

A^B
r^Is

Notation
§ Premise(s) at the top
§ Conclusion at the bottom
§ Name of the inference rule on the right
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Some simple inference rules

And-introduction:
A B

A^B
r^Is

Implication-elimination

A A Ñ B

B
rÑ Es

False-elimination
K

A
rK Es

True-introduction
J

rJIs
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A simple proof

Negation-elimination, i.e., both A and ␣A cannot be true at
same time

Formally, want to prove A,␣A $ K

A proof is a tree of instances of inference rules.

Assuming that ␣A is defined as A ÑK, a proof of the above
sequent (or argument) is:

A ␣A

K
rÑ Es
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Another simple proof

Given three hypotheses A, B, C, how can we prove
pA^Bq ^ pA^ Cq?

Here is a proof:

A B

A^B
r^Is

A C

A^ C
r^Is

pA^Bq ^ pA^ Cq
r^Is

The rule used at each step is and-introduction, i.e., ^I
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Conclusion

What did we cover today?
§ Syntax of propositional logic
§ Informal semantics of propositional logic formulas
§ Simple Natural Deduction proofs

Next time?
§ Natural Deduction
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ Natural Deduction proofs
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Recap: Connectives & Special Atomic Propositions

Syntax
P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

Two special atoms:
§ J which stands for True
§ K which stands for False

We also introduced four connectives:
§ P ^Q: we have a proof of both P and Q

§ P _Q: we have a proof of at least one of P and Q

§ P Ñ Q: if we have a proof of P then we have a proof of Q

§ ␣P : stands for P ÑK

4/22



Recap: Proofs in Propositional Logic

For formal proofs, we need two things
1. A formal language

§ for representing propositions, arguments
§ here we are using propositional logic

2. A proof theory
§ to prove (“infer”, “deduce”) whether an argument is valid
§ inference rules, which are the building blocks of proofs

5/22



Recap: What are inference rules?

Inference rules are the tools we are allowed to use
Careful with the rules you assume otherwise you might be able to
prove false statements!

Example of an inference rule (and-introduction rule):

A B
r^Is

A^B

These are rule schemata, where here A and B are metavariables
ranging over all possible propositions.

Notation
§ Premise(s) at the top
§ Conclusion at the bottom
§ Name of the inference rule on the right
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Recap: Some simple inference rules

And-introduction
A B

r^Is
A^B

implication-elimination

A Ñ B A
rÑ Es

B

False-elimination
K

rK Es
A

True-introduction
rJIs

J
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Recap: A simple proof

Negation-elimination, i.e., both A and ␣A cannot be true at
same time

Formally, want to prove A,␣A $ K

A proof is a tree of instances of inference rules.

Assuming that ␣A is defined as A ÑK, a proof of the above
sequent (or argument) is:

A ␣A

K
rÑ Es
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Recap: Another simple proof

Given three hypotheses A, B, C, how can we prove
pA^Bq ^ pA^ Cq?

Here is a proof:

A B

A^B
r^Is

A C

A^ C
r^Is

pA^Bq ^ pA^ Cq
r^Is

The rule used at each step is and-introduction, i.e., r^Is
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Natural Deduction

Framework
§ “natural” style of constructing a proof
§ start with the given premises
§ repeatedly apply the given inference rules
§ until you obtain the conclusion

Two key points:
§ Can work both forwards and backwards
§ Natural doesn’t mean there is unique proof

Introduced by Gentzen in 1934
and further studied by Prawitz in 1965.
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Slightly confusing aspect of natural Deduction

Discharging/cancellation of hypothesis

A
1

....
B

A Ñ B
1 rÑ Is

This is the “implication-introduction” rule.

We don’t have to make use of A in which case we can just omit it:

B

A Ñ B
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Cancelling hypothesis continued

Given the hypothesis A, C how can we prove
B Ñ ppA^Bq ^ pA^ Cqq?

Here is a proof:

A B
1

A^B
r^Is

A C

A^ C
r^Is

pA^Bq ^ pA^ Cq
r^Is

B Ñ ppA^Bq ^ pA^ Cqq
1 rÑ Is

At this point, we can also cancel another hypothesis, say A

This gives a proof of

A Ñ pB Ñ ppA^Bq ^ pA^ Cqqq

using the hypothesis C only
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Cancelling hypothesis continued

We proved it forward, but we can also prove it backward:

A B
1

A^B
r^Is

A C

A^ C
r^Is

pA^Bq ^ pA^ Cq
r^Is

B Ñ ppA^Bq ^ pA^ Cqq
1 rÑ Is
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Comprehensive set of inference rules

Rules for Ñ (implication)
§ implication-introduction

A
1

....
B

A Ñ B
1 rÑ Is

§ implication-elimination

A Ñ B A
rÑ Es

B
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Comprehensive set of inference rules

Rules for ␣ (not)
§ Negation-introduction

A
1

....
K

␣A
1 r␣Is

§ Negation-elimination

A ␣A
r␣Es

K
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Comprehensive set of inference rules

Rules for _ (or)
§ or-introduction (for any formula B)

A

A_B
r_ILs

A

B _A
r_IRs

§ or-elimination

A_B A Ñ C B Ñ C
r_Es

C
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More comprehensive set of inference rules

Rules for ^ (and)
§ and-introduction

A B
r^Is

A^B

§ and-elimination
A^B

B
r^ERs

A^B

A
r^ELs
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A simple natural Deduction proof

Given A Ñ B and B Ñ C, give a proof of A Ñ C

Here is a proof:

A
1

A Ñ B

B
rÑ Es

B Ñ C

C
rÑ Es

A Ñ C
1 rÑ Is

And backward?

A
1

A Ñ B

B
rÑ Es

B Ñ C

C
rÑ Es

A Ñ C
1 rÑ Is

We also need to go forward to prove C
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Another simple natural Deduction proof

Given ␣A_B and A, how do we derive B?
Here is a proof:

␣A_B

A ␣A
1

K
r␣Es

B
rK Es

␣A Ñ B
1 rÑ Is

B
2

B Ñ B
2 rÑ Is

B
r_Es

Backward? We go forward because we are left with just B

␣A_B

A ␣A
1

K
r␣Es

B
rK Es

␣A Ñ B
1 rÑ Is

B
2

B Ñ B
2 rÑ Is

B
r_Es
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Forward & backward reasoning in Natural Deduction

We typically go both forward and backward in proofs

Show pB ^Aq given the hypothesis pA^Bq

Here is a proof:

A^B

B
r^ERs

A^B

A
r^ELs

B ^A
r^Is
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Complicated looking question

Prove the following:
R , pP Ñ Qq ^ pQ Ñ P q , Q Ñ Z , R Ñ P $ Z

Here is a proof:

Q Ñ Z

R R Ñ P

P
rÑ Es

P Ñ Q^Q Ñ P

P Ñ Q
r^Es

Q
rÑ Es

Z
rÑ Es
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Conclusion

What did we cover today?
§ Natural Deduction rules for propositional logic
§ Natural Deduction proofs
§ Forward & backward reasoning

Next time?
§ Classical Reasoning
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ Classical Reasoning
§ Constructive vs. Classical Natural Deduction

Further reading
§ Chapter 5 of

http://leanprover.github.io/logic_and_proof/
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Recap: Propositional logic syntax

Syntax:
P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

Two special atoms:
§ J which stands for True
§ K which stands for False

We also introduced four connectives:
§ P ^Q: we have a proof of both P and Q

§ P _Q: we have a proof of at least one of P and Q

§ P Ñ Q: if we have a proof of P then we have a proof of Q

§ ␣P : stands for P ÑK
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Recap: Proofs

Natural Deduction

introduction/elimination rules

natural proofs

A
1

....
B

A Ñ B
1 rÑ Is
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Classical Reasoning

The proof systems we have seen so far are sometimes called
constructive or intuitionistic, i.e., proofs can be viewed as
programs:

§ A proof of A^B can be viewed as a pair of a proof of A and
a proof of B

§ A proof of A Ñ B can be viewed as a procedure which
transforms evidence for A into evidence for B

§ A proof of A_B is either a proof of A or a proof of B, which
indicates which one it is

There are other proof systems, called classical, which
§ rely on Boolean truth values
§ introduce additional reasoning principles
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Classical Reasoning: Proof by Contradiction

A typical classical reasoning principal is the “proof by
contradiction” proof technique

Example: Euclid’s proof of infinitude of primes
§ Assume the negation: Suppose there are only finitely many

primes, say p1, p2, . . . , pr

§ Consider the number n “ pp1 ˆ p2 ˆ . . .ˆ prq ` 1
§ Then n cannot be a prime (by assumption)
§ But none of the primes p1, p2, . . . , pr can divide n

§ Contradiction

Proof by Contradiction:
§ If ␣A ÑK then A
§ That is, ␣␣A $ A
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Negation of a negation is?

Can we deduce A and ␣␣A from each other? That is, are they
equivalent?

One direction is easy: A $ ␣␣A

Here is the proof:

A ␣A
1

K
r␣Es

␣␣A
1 r␣Is

Can we show the other direction, i.e., ␣␣A $ A?

Not using the current set of inference rules we have!
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Classical vs. Intutionistic Reasoning in Natural Deduction

Two more (equivalent) assumptions/rules

Law of Excluded Middle (LEM)
§ For each A, we can always prove one of A or ␣A

§ i.e., $ A_␣A

§ E.g., we can assume every even natural number ą 2 is the sum
of two primes, or not, without knowing which one is true

Double Negation Elimination (DNE)
§ ␣␣A $ A

§ Equivalently, p␣Aq ÑK$ A

§ “proof by contradiction”
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Classical vs. Intutionistic Reasoning in Natural Deduction

Two more (equivalent) assumptions/rules

As rules:

A_␣A
rLEMs

␣␣A

A
rDNEs

Classical reasoning allows using these two rules

We so far have not used them, and were therefore using what is
called constructive or intuitionistic logic
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LEM implies DNE

Assuming A_␣A, infer ␣␣A $ A

Here is a proof:

A_␣A

A
1

A Ñ A
1 rÑ Is

␣A
2
␣␣A

K
r␣Es

A
rK Es

␣A Ñ A
2 rÑ Is

A
r_Es
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DNE implies LEM

Assuming ␣␣A $ A, infer $ A_␣A

Here is a proof:

␣pA_␣Aq
1

␣pA_␣Aq
1

A
2

A_␣A
r_ILs

K
r␣Es

␣A
2 r␣Is

A_␣A
r_IRs

K
r␣Es

␣␣pA_␣Aq
1 r␣Is

A_␣A
rDNEs
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Contrapositive

Given an implication A Ñ B, the formula ␣B Ñ ␣A is called the
“contrapositive”

Can we prove that an implication implies its contrapositive?
A Ñ B $ ␣B Ñ ␣A

Here is a proof (intuitionistic):

A Ñ B A
2

B
rÑ Es

␣B
1

K
r␣Es

␣A
2 r␣Is

␣B Ñ ␣A
1 rÑ Is

The other direction holds in classical logic (next slide)
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Contrapositive

Given an implication A Ñ B, the formula ␣B Ñ ␣A is called the
“contrapositive”

Can we prove that an implication follows from its contrapositive?
␣B Ñ ␣A $ A Ñ B

Here is a proof (classical):

A
1
␣B Ñ ␣A ␣B

2

␣A
rÑ Es

K
r␣Es

␣␣B
2 r␣Is

B
rDNEs

A Ñ B
1 rÑ Is

We used DNE, and hence this proof uses classical reasoning!
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Classical Reasoning Through Examples

We will present classical proofs of:
§ pA Ñ Bq _ pB Ñ Aq

§ p␣B Ñ ␣Aq Ñ pA Ñ Bq

We saw a classical proof of p␣B Ñ ␣Aq Ñ pA Ñ Bq before using
DNE – we will present an alternative proof that uses LEM instead

Which we will prove in classical Natural Deduction.
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Example 1

Provide a classical Natural Deduction proof of pA Ñ Bq _ pB Ñ Aq

A_␣A
rLEMs

A
1

B Ñ A
2 rÑ Is

pA Ñ Bq _ pB Ñ Aq
r_IRs

A Ñ pA Ñ Bq _ pB Ñ Aq
1 rÑ Is

␣A
3

A
4

K
r␣Es

B
rK Es

A Ñ B
4 rÑ Is

pA Ñ Bq _ pB Ñ Aq
r_ILs

␣A Ñ pA Ñ Bq _ pB Ñ Aq
3 rÑ Is

pA Ñ Bq _ pB Ñ Aq
r_Es

Hypotheses:
§ hyp. 1: A

§ hyp. 2: B

§ hyp. 3: ␣A

§ hyp. 4: A
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Example 2

Provide a classical Natural Deduction proof of
p␣B Ñ ␣Aq Ñ pA Ñ Bq
Here is a proof:

B _␣B
rLEMs

B
3

B Ñ B
3 rÑ Is

␣B Ñ ␣A
1
␣B

4

␣A
rÑ Es

A
2

K
r␣Es

B
rK Es

␣B Ñ B
4 rÑ Is

B
r_Es

A Ñ B
2 rÑ Is

p␣B Ñ ␣Aq Ñ pA Ñ Bq
1 rÑ Is

Hypotheses:
§ hyp. 1: ␣B Ñ ␣A

§ hyp. 2: A

§ hyp. 3: B

§ hyp. 4: ␣B
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Conclusion

What did we cover today?
§ Classical Reasoning
§ Constructive vs. Classical Natural Deduction

Further reading
§ Chapter 5 of

http://leanprover.github.io/logic_and_proof/
§ “Proofs and Types”, Girard, Taylor, and Lafont, Chapter 5

Next time
§ Propositional logic’s (classical) semantics
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ semantics of propositional logic
§ satisfiability & validity
§ truth tables
§ soundness & completeness

Further reading:
§ Chapter 6 of

http://leanprover.github.io/logic_and_proof/

3/26
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Recap: Propositional logic syntax

Syntax:
P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

Two special atoms:
§ J which stands for True
§ K which stands for False

We also introduced four connectives:
§ P ^Q: we have a proof of both P and Q

§ P _Q: we have a proof of at least one of P and Q

§ P Ñ Q: if we have a proof of P then we have a proof of Q

§ ␣P : stands for P ÑK
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Syntax vs. Semantics

Syntax
§ Rules for allowable formulas in the language
§ Syntax for propositional logic:

P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

Semantics
§ Assigning meaning/interpretations with formulas
§ Semantics for propositional logic: This lecture!

Syntax and Semantics for the English language?
§ Syntax: alphabet and grammar
§ Semantics: meanings for words
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Semantics for Propositional Logic

Semantics assigns meanings/interpretrations with formulas

The basic notion we use is “truth value”

The two standard truth values are “true” and “false”
We use the symbols T and F respectively

This is a classical notion of truth
§ i.e., interpretation of each proposition is either true or false
§ Excluded Middle: for each A we have A_␣A

§ Here it means for each A, we have that A is either true or false.

WARNING: This is just one possible way to assign meanings!
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Semantics for Propositional Logic (continued)

Truth assignment
§ Function assigning a truth value for each atomic proposition
§ E.g., given 2 atomic propositions p, q, if the formula is p_ q

§ then one truth assignment ϕ is ϕppq “ T and ϕpqq “ F
§ Also called an “interpretation” or a “valuation”

How many truth valuations do we need to consider for p_ q?
§ 22 “ 4
§ ϕppq “ T, ϕpqq “ T and ϕppq “ T, ϕpqq “ F and

ϕppq “ F, ϕpqq “ T and ϕppq “ F, ϕpqq “ F

Conventions:
§ The atoms J,K have the interpretations T, F respectively
§ ϕpJq “ T and ϕpKq “ F
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Semantics of logical connectives

How to extend the notion of semantics to compound formulas?
Define semantics for the four logical connectives: _,^,Ñ,␣

This is done recursively bottom-up over the structure of
propositions.

For example given a conjunction A^B, we first have to evaluate
the truth-values of A and B to compute the truth-value of A^B.

I.e., ϕpA^Bq “ T iff both ϕpAq “ T and ϕpBq “ T.
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Semantics of logical connectives

The extended valuation function is recursively defined as follows:
§ ϕpJq “ T
§ ϕpKq “ F
§ ϕpA_Bq “ T iff either ϕpAq “ T or ϕpBq “ T
§ ϕpA^Bq “ T iff both ϕpAq “ T and ϕpBq “ T
§ ϕpA Ñ Bq “ T iff ϕpBq “ T whenever ϕpAq “ T
§ ϕp␣Aq “ T iff ϕpAq “ F
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Semantics of logical connectives

What is ϕp2 ą 1^ 1 ą 0q? (inequalities are atomic propositions)

ϕp2 ą 1^ 1 ą 0q “ T because ϕp2 ą 1q “ T and ϕp1 ą 0q “ T

What is ϕp2 ą 1^ 0 ą 1q?

ϕp2 ą 1^ 0 ą 1q “ F because ϕp0 ą 1q “ F

What is ϕpx ą 1^ 3 ą xq?

we don’t know: it depends on ϕpx ą 1q and ϕp3 ą xq

What is ϕpx ą 1_ 2 ą xq?

it depends on ϕpx ą 1q and ϕp2 ą xq

ϕpx ą 1_ 2 ą xq “ T for all combinations
only 2 possible combinations (the atoms are interdependent):
ϕpx ą 1q “ T, ϕp2 ą xq “ F and ϕpx ą 1q “ F, ϕp2 ą xq “ T
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Semantics of logical connectives

What is ϕp2 ą 0 Ñ 1 ą 0q? (inequalities are atomic propositions)
ϕp2 ą 0 Ñ 1 ą 0q “ T because ϕp1 ą 0q “ T

What is ϕp0 ą 2 Ñ 1 ą 0q?
still ϕp0 ą 2 Ñ 1 ą 0q “ T because ϕp1 ą 0q “ T

What is ϕp2 ą 0 Ñ 0 ą 1q?
ϕp2 ą 0 Ñ 0 ą 1q “ F because ϕp0 ą 1q “ F while ϕp2 ą 0q “ T

What is ϕp0 ą 2 Ñ 0 ą 1q?
ϕp0 ą 2 Ñ 0 ą 1q “ T because ϕp0 ą 2q “ F

What is ϕpx ą 2 Ñ x ą 1q? it depends on ϕpx ą 2q and ϕpx ą 1q
ϕpx ą 2 Ñ x ą 1q “ T for all possible combinations (the atoms are
interdependent): ϕpx ą 2q “ T, ϕpx ą 1q “ T and
ϕpx ą 2q “ F, ϕpx ą 1q “ T and ϕpx ą 2q “ F, ϕpx ą 1q “ F
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Satisfiability & Validity

The above technique allows answering the following question:
What is the truth value of a formula w.r.t. a given valuation
of its atoms?

To analyze the meaning of a formula, we also want to analyze its
truth value w.r.t. all possible combinations of assignments of
truth values with its atoms.

Satisfaction & validity
§ Given a valuation ϕ on all atomic propositions, we say that ϕ

satisfies A if ϕpAq “ T.
§ A is satisfiable if there exists a valuation ϕ on atomic

propositions such that ϕpAq “ T.
§ A is valid if ϕpAq “ T for all possible valuations ϕ.

A method to check satisfiability and validity: truth tables
12/26



Truth tables

Semantics for “or”

ϕpA_Bq “ T iff either ϕpAq “ T or ϕpBq “ T

Truth table for “or”

A B A_B

T T T
T F T
F T T
F F F

§ One row for each valuation
§ Last column has the truth value for the corresponding valuation
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Truth tables

Semantics for “and”

ϕpA^Bq “ T iff both ϕpAq “ T and ϕpBq “ T

Truth table for “and”

A B A^B

T T T
T F F
F T F
F F F
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Truth tables

Semantics for “implies”

ϕpA Ñ Bq “ T iff ϕpBq “ T whenever ϕpAq “ T

Truth table for “implies”

A B A Ñ B

T T T
T F F
F T T
F F T
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Truth tables

Semantics for “not”

ϕp␣Aq “ T iff ϕpAq “ F

Truth table for “not”

A ␣A

T F
F T
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Semantics for compound formulas

We can now construct a truth table for any propositional formula
§ consider all possible truth assignments for the atoms
§ then use truth tables for each connective recursively

What is the truth table for pp Ñ qq ^ ␣q?

p q p Ñ q ␣q pp Ñ qq ^ ␣q

T T T F F
T F F T F
F T T F F
F F T T T

§ 2 atoms, and hence 22 “ 4 rows (one per interpretation)
§ Use intermediate columns to evaluate sub-formulas
§ 2 atoms and 3 connectives hence 2` 3 “ 5 columns
§ Rightmost column gives values of the formula
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Satisfiability & validity

A formula is satisfiable iff there is a valuation that satisfies it
i.e., if there is a T in the rightmost column of its truth table
example: p^ q because of the valuation ϕppq “ T, ϕpqq “ T

A formula is falsifiable iff there is a valuation that makes it false
i.e., if there is a F in the rightmost column of its truth table
example: p^ q because of the valuation ϕppq “ F, ϕpqq “ T

A formula is unsatisfiable iff no valuation satisfies it
i.e., the cells of the rightmost column of its truth table all contain F
example: p^␣p (contradiction)

A formula is valid iff every valuation satisfies it
i.e., the cells of the rightmost column of its truth table all contain T
example: p_␣p (tautology)
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Validity of arguments using semantics

Validity of an argument
§ syntactically: we can derive the conclusion from the premises
§ semantically: the conclusion is true whenever the premises are

Formally, we write
P1, . . . , Pn |ù C

if the corresponding argument is semantically valid
i.e., every valuation that evaluates each of the premises P1, . . . , Pn

to T also evaluates the conclusion C to T

Checking validity
§ Already seen how to do this using “natural deduction”
§ Truth tables is yet another way
§ Bonus: yields counterexample if argument is invalid
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Checking (semantic) validity

Is P Ñ Q,␣Q |ù ␣P (semantically) valid?

P Q P Ñ Q ␣Q ␣P

T T T F F
T F F T F
F T T F T
F F T T T

Argument is valid: any row where conclusion is F then at least one
of the premises is also F

Note that checking P1, . . . , Pn |ù C is equivalent to checking the
validity of P1 Ñ ¨ ¨ ¨Pn Ñ C

i.e., that the cells of the rightmost column of the truth table for
P1 Ñ ¨ ¨ ¨Pn Ñ C all contain T
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Checking (semantic) validity

Is ␣P Ñ ␣R, R |ù ␣P (semantically) valid?

P R ␣P ␣R ␣P Ñ ␣R R ␣P

T T F F T T F
T F F T T F F
F T T F F T T
F F T T T F T

Argument is invalid
§ Look at the first row
§ Conclusion is F, but both premises are T
§ Can we add a premise to make the argument valid?

§ Yes, we can add ␣R, which would be F in the first row
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Proving anything using contradictions!

Is P,␣P |ù C is (semantically) valid?

P C ␣P C

T T F T
T F F F
F T T T
F F T F

Argument is (trivially) valid:
§ Look at any row (we only have to look at rows where the

conclusion is F)
§ One of P and ␣P is F
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Truth Tables vs. Natural Deduction

Pros and cons of two ways of checking validity

Truth tables Natural deduction
shows validity in a restricted
setting (Boolean truth values)

checks validity in general set-
ting (by an actual proof!)

simple, easy to automate more difficult to automate
size of truth table is huge: ex-
ponential in number of atoms

typically scales better than
brute force search

generates counterexamples if
invalid

no easy way to check validity
(other than actually proving)
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Soundness & Completeness

Given a deduction system such as Natural deduction, a formula is
said to be provable if there is a proof of it in that deduction system

§ This is a syntactic notion
§ it asserts the existence of a syntactic object: a proof
§ typically written $ A

A formula A is valid if ϕpAq “ T for all possible valuations ϕ

§ it is a semantic notion
§ it is checked w.r.t. valuations that give meaning to formulas

Soundness: a deduction system is sound w.r.t. a semantics if every
provable formula is valid

§ i.e., if $ A then |ù A

Completeness: a deduction system is complete w.r.t. a semantics if
every valid formula is provable

§ i.e., if |ù A then $ A
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Soundness & Completeness

Classical Natural Deduction is
§ sound and
§ complete

w.r.t. the truth table semantics

Proving those properties is done within the metatheory
§ Soundness is easy. It requires proving that each rule is valid.

For example:
A B

A^B
r^Is

is valid because A, B |ù A^B

§ Completeness is harder

We will not prove them here
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Conclusion

What did we cover today?
§ semantics of propositional logic
§ satisfiability & validity
§ truth tables
§ soundness & completeness

Further reading
§ Chapter 6 of

http://leanprover.github.io/logic_and_proof/

Next time?
§ equivalences
§ normal forms
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic

2/28



Today

§ Logical Equivalences
§ Proving logical Equivalences in Natural Deduction
§ Proving logical Equivalences using truth tables
§ Normal forms

Further reading:
§ Chapter 3 of

http://leanprover.github.io/logic_and_proof/

3/28
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Recap: Propositional logic syntax

Syntax:
P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

Lower-case letters are atoms: p, q, r, etc.
Upper-case letters stand for any proposition: P , Q, R, etc.

Two special atoms:
§ J which stands for True
§ K which stands for False

We also introduced four connectives:
§ P ^Q: we have a proof of both P and Q

§ P _Q: we have a proof of at least one of P and Q

§ P Ñ Q: if we have a proof of P then we have a proof of Q

§ ␣P : stands for P ÑK
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Recap: Proofs

Natural Deduction

introduction/elimination rules

natural proofs

A
1

....
B

A Ñ B
1 rÑ Is

5/28



Recap: Classical Reasoning

Two (equivalent) classical rules

Law of Excluded Middle (LEM)
§ $ A_␣A

§ We will write LEM for A_␣A

Double Negation Elimination (DNE)
§ “proof by contradiction”
§ ␣␣A $ A

§ Equivalently, p␣Aq ÑK$ A

§ Equivalently, $ p␣␣Aq Ñ A

§ We will write DNE for p␣␣Aq Ñ A

Classical system:
§ Classical Natural Deduction with LEM and DNE rules
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Recap: Semantics

Semantics for “implies”

ϕpA Ñ Bq “ T iff ϕpBq “ T whenever ϕpAq “ T

Truth table for “implies”

P Q P Ñ Q

T T T
T F F
F T T
F F T
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Logical equivalences

Let A Ø B be defined as pA Ñ Bq ^ pB Ñ Aq

§ it means that A and B are logically equivalent
§ A and B have the same semantics
§ ϕpAq “ T if and only if ϕpBq “ T
§ A is provable if and only if B is provable
§ this is called a “bi-implication”
§ read as “A if and only if B”

Example: we showed that DNE and LEM are equivalent

We have already proved:
§ DNE Ñ LEM
§ LEM Ñ DNE

It is then straightforward to derive a proof of DNE Ø LEM
8/28



Logical equivalences

Another example: we showed that implications are classically
equivalent to their contrapositives (in classical logic)

We have proved:
§ pA Ñ Bq Ñ p␣B Ñ ␣Aq in intuitionistic logic
§ p␣B Ñ ␣Aq Ñ pA Ñ Bq in classical logic

It is then straightforward to derive a proof of
pA Ñ Bq Ø p␣B Ñ ␣Aq in classical Natural Deduction

Equivalences are for example useful in proofs to “replace” a
formula by another equivalent formula

We will now present some standard ones
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Logical equivalences

We are going to prove:
§ De Morgan’s law (I): ␣pA_Bq Ø p␣A^␣Bq
§ De Morgan’s law (II): ␣pA^Bq Ø p␣A_␣Bq
§ implication elimination: pA Ñ Bq Ø p␣A_Bq

Some of these proofs are intuitionistic, while some are classical

In addition you can try to prove:
§ Commutativity of ^: pA^Bq Ø pB ^Aq

§ Commutativity of _: pA_Bq Ø pB _Aq

§ Associativity of ^: ppA^Bq ^ Cq Ø pA^ pB ^ Cqq

§ Associativity of _: ppA_Bq _ Cq Ø pA_ pB _ Cqq

§ Distributivity of ^ over _: pA^ pB _ Cqq Ø ppA^Bq _ pA^ Cqq

§ Distributivity of _ over ^: pA_ pB ^ Cqq Ø ppA_Bq ^ pA_ Cqq

§ Double negation elimination: p␣␣Aq Ø A

§ Idempotence: pA^Aq Ø A and pA_Aq Ø A 10/28



Logical equivalences

As our Natural Deduction equivalence proofs will all be as follows:

A
1

....
B

A Ñ B
1 rÑ Is

B
2

....
A

B Ñ A
2 rÑ Is

A Ø B
r^Is

then, we will focus on proving
§ A $ B (left-to-right implication)
§ B $ A (right-to-left implication)
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De Morgan’s Laws (I): Negation of OR

Show the logical equivalence ␣pA_Bq Ø p␣A^␣Bq in Natural
Deduction

We first prove the left-to-right implication:
␣pA_Bq $ p␣A^␣Bq

Here is a proof:

␣pA_Bq

A
1

A_B
r_ILs

K
r␣Es

␣A
1 r␣Is

␣pA_Bq

B
2

A_B
r_IRs

K
r␣Es

␣B
2 r␣Is

␣A^␣B
r^Is

Proof only uses intuitionistic rules!
Other direction on the next slide
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De Morgan’s Laws (I): Negation of OR

Show the logical equivalence ␣pA_Bq Ø p␣A^␣Bq in Natural
Deduction

We now prove the right-to-left implication:
p␣A^␣Bq $ ␣pA_Bq

Here is a proof:

A_B
1

A
2
␣A^␣B

␣A
r^Es

K
r␣Es

A ÑK
2 rÑ Is

B
3
␣A^␣B

␣B
r^Es

K
r␣Es

B ÑK
3 rÑ Is

K
r_Es

␣pA_Bq
1 r␣Is

Again, we only used intuitionistic rules!
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De Morgan’s Laws (II): Negation of AND

Show the logical equivalence ␣pA^Bq Ø ␣A_␣B in Natural
Deduction

We first prove the right-to-left implication: ␣A_␣B $ ␣pA^Bq

Here is a proof:

␣A_␣B

␣A
2

A^B
1

A
r^ELs

K
r␣Es

␣A ÑK
2 rÑ Is

␣B
3

A^B
1

B
r^ERs

K
r␣Es

␣B ÑK
3 rÑ Is

K
r_Es

␣pA^Bq
1 r␣Is

Proof uses intuitionistic rules!
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De Morgan’s Laws (II): Negation of AND

Show the logical equivalence ␣pA^Bq Ø ␣A_␣B in Natural
Deduction

We now prove the left-to-right implication: ␣pA^Bq $ ␣A_␣B

Here is a proof (classical—we use DNE thrice):

␣pA^Bq

␣A
2

␣A_␣B
r_ILs

␣p␣A_␣Bq
1

K
r␣Es

␣␣A
2 r␣Is

A
rDNEs

␣B
3

␣A_␣B
r_IRs

␣p␣A_␣Bq
1

K
r␣Es

␣␣B
3 r␣Is

B
rDNEs

A^B
r^Is

K
r␣Es

␣␣p␣A_␣Bq
1 r␣Is

␣A_␣B
rDNEs

15/28



Expressing Ñ using ␣ and _

Show the logical equivalence: A Ñ B Ø ␣A_B

We first prove the left-to-right implication A Ñ B $ ␣A_B

Here is a proof (classical—it uses LEM):

A_␣A
rLEMs

A
1

A Ñ B

B
rÑ Es

␣A_B
r_IRs

A Ñ p␣A_Bq
1 rÑ Is

␣A
2

␣A_B
r_ILs

␣A Ñ p␣A_Bq
2 rÑ Is

␣A_B
r_Es

The other direction holds intuitionistically (next slide)
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Expressing Ñ using ␣ and _

Show the logical equivalence: A Ñ B Ø ␣A_B

We now prove the right-to-left implication ␣A_B $ A Ñ B

Here is a proof (intuitionistic):

␣A_B

␣A
2

A
1

K
r␣Es

B
rK Es

␣A Ñ B
2 rÑ Is

B
3

B Ñ B
3 rÑ Is

B
r_Es

A Ñ B
1 rÑ Is
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Logical equivalences using truth tables

Classically, two formulas are logically equivalent if they have the
same semantics.

I.e., they have the same truth values for all valuations.

E.g., an implication and its contrapositive are logically equivalent:

Show that pA Ñ Bq Ø p␣B Ñ ␣Aq using a truth table

A B A Ñ B ␣B ␣A ␣B Ñ ␣A

T T T F F T
T F F T F F
F T T F T T
F F T T T T

The two formulas are equivalent because the two columns for
A Ñ B and ␣B Ñ ␣A are identical
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Normal forms

Among the formulas equivalent to a given formula, some are of
particular interest:

§ Conjunctive Normal forms (CNF)
§ pA_B _ Cq ^ pD _Xq ^ p␣Aq

§ ANDs of ORs of literals (atoms or negations of atoms)
§ A clause in this context is a disjunction of literals

§ Disjunctive Normal Form (DNF)
§ pP ^Q^Aq _ pR^␣Qq _ p␣Aq

§ ORs of ANDs of literals
§ A clause in this context is a conjunction of literals

All the variables above and the ones used in the rest of this lecture
stand for atomic propositions
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Every formula can be expressed in DNF

Every proposition is equivalent to a formula in DNF (OR of ANDs)!

Can you find propositions in DNF that are logically equivalent to:

§ pA^␣B ^␣Cq _X

Already in DNF

§ Z

Already in DNF

§ A Ñ B

Logically equivalent to ␣A_B

§ ␣pA^Bq

Logically equivalent (by De Morgan’s law) to ␣A_␣B
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Every formula can be expressed in CNF

Every proposition is equivalent to a formula in CNF (AND of ORs)!

Can you find propositions in CNF that are logically equivalent to:

§ pA_␣B _␣Cq ^X

Already in CNF

§ Z

Already in CNF

§ A Ñ B

Logically equivalent to ␣A_B

§ ␣pA_Bq

Logically equivalent (by De Morgan’s law) to ␣A^␣B
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Every proposition can be expressed in DNF

Every proposition can be expressed in DNF (ORs of ANDs)!

Express pP Ñ Qq ^Q in DNF
We do it using a truth table

P Q pP Ñ Qq pP Ñ Qq ^Q

T T T T
T F F F
F T T T
F F T F

§ Enumerate all the T rows from the conclusion column
§ Row 1 gives P ^Q
§ Row 3 gives ␣P ^Q

§ Take OR of these formulas
§ Final answer is pP ^Qq _ p␣P ^Qq

23/28



Every formula can be expressed in CNF

Every proposition can be expressed in CNF (ANDs of ORs)!

Express pP Ñ Qq ^Q in CNF
We do it by using a truth table

P Q pP Ñ Qq pP Ñ Qq ^Q

T T T T
T F F F
F T T T
F F T F

§ Enumerate all the F rows from the conclusion column
§ Row 2 gives P ^␣Q
§ Row 4 gives ␣P ^␣Q

§ Do AND of negations of each of these formulas
§ We obtain ␣pP ^␣Qq ^ ␣p␣P ^␣Qq
§ Finally: equivalent to p␣P _Qq ^ pP _Qq by De Morgan
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Making use of equivalences to convert to CNF/DNF

If P Ø Q and P occurs in A, then replacing P by Q in A leads to
a proposition B, such that A Ø B

Example:
§ consider the formula P Ñ Q Ñ pP ^Qq

§ we know that classically pQ Ñ pP ^Qqq Ø p␣Q_ pP ^Qqq

§ this is an instance of pA Ñ Bq Ø p␣A_Bq

§ when replacing Q Ñ pP ^Qq by ␣Q_ pP ^Qq in
P Ñ Q Ñ pP ^Qq, we obtain P Ñ p␣Q_ pP ^Qqq

§ P Ñ Q Ñ pP ^Qq and P Ñ p␣Q_ pP ^Qqq are equivalent
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Making use of equivalences to convert to CNF/DNF

We can convert a formula to an equivalent formula in CNF or DNF
using the equivalences presented above (slide 10)
Example: express pP Ñ Qq ^Q in CNF using known equivalences

§ pP Ñ Qq ^Q pP Ñ Q q ^Q

§ Ø p␣P _Qq ^Q – using pA Ñ Bq Ø p␣A_Bq

Example: express ␣pP ^␣Qq ^ ␣p␣P ^␣Qq in CNF using known
equivalences

§ ␣pP ^␣Qq ^ ␣p␣P ^␣Qq ␣pP ^␣Qq ^ ␣p␣P ^␣Qq

§ Ø p␣P _␣␣Qq ^ ␣p␣P ^␣Qq p␣P _␣␣Qq ^ ␣p␣P ^␣Qq
– using de Morgan

§ Ø p␣P _␣␣Qq ^ p␣␣P _␣␣Qq
p␣P _ ␣␣Q q ^ p␣␣P _␣␣Qq – using de Morgan

§ Ø p␣P _Qq ^ p␣␣P _␣␣Qq p␣P _Qq ^ p␣␣P _␣␣Qq –
using double negation elim.

§ Ø p␣P _Qq ^ pP _␣␣Qq p␣P _Qq ^ pP _ ␣␣Q q – using
double negation elim.

§ Ø p␣P _Qq ^ pP _Qq – using double negation elim.
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Making use of equivalences to convert to CNF/DNF

Example: express pP Ñ Qq ^Q in DNF using known equivalences
§ pP Ñ Qq ^Q

§ Ø p␣P _Qq ^Q – using pA Ñ Bq Ø p␣A_Bq

§ Ø Q^ p␣P _Qq – using commutativity of ^
§ Ø pQ^␣P q _ pQ^Qq – using distributivity of ^ over _
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Conclusion

What did we cover today?
§ Logical Equivalences
§ Proving logical Equivalences in Natural Deduction
§ Proving logical Equivalences using truth tables
§ Normal forms

Further reading:
§ Chapter 3 of

http://leanprover.github.io/logic_and_proof/

Next time
§ SAT
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ History of Computing
§ SAT (first N P-hard problem)
§ Algorithms for SAT
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Recap: Propositional logic syntax

Syntax:
P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

Two special atoms:
§ J which stands for True
§ K which stands for False

We also introduced four connectives:
§ P ^Q: we have a proof of both P and Q

§ P _Q: we have a proof of at least one of P and Q

§ P Ñ Q: if we have a proof of P then we have a proof of Q

§ ␣P : stands for P ÑK
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Recap: Normal forms

Among the formulas equivalent to a given formula, some are of
particular interest (the variables here stand for atoms):

§ Conjunctive Normal forms (CNF)
§ pA_B _ Cq ^ pD _Xq ^ p␣Aq

§ ANDs of ORs of literals (atoms or negations of atoms)
§ A clause in this context is a disjunction of literals

§ Disjunctive Normal Form (DNF)
§ pP ^Q^Aq _ pR^␣Qq _ p␣Aq

§ ORs of ANDs of literals
§ A clause in this context is a conjunction of literals

Theorem: Every proposition is equivalent to a formula in CNF!

Theorem: Every proposition is equivalent to a formula in DNF!
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Recap: Every proposition can be expressed in DNF

Every proposition can be expressed in DNF (ORs of ANDs)!

Express pP Ñ Qq ^Q in DNF
We do it using a truth table

P Q pP Ñ Qq pP Ñ Qq ^Q

T T T T
T F F F
F T T T
F F T F

§ Enumerate all the T rows from the conclusion column
§ Row 1 gives P ^Q
§ Row 3 gives ␣P ^Q

§ Take OR of these formulas
§ Final answer is pP ^Qq _ p␣P ^Qq
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Recap: Every formula can be expressed in CNF

Every proposition can be expressed in CNF (ANDs of ORs)!

Express pP Ñ Qq ^Q in CNF
We do it by using a truth table

P Q pP Ñ Qq pP Ñ Qq ^Q

T T T T
T F F F
F T T T
F F T F

§ Enumerate all the F rows from the conclusion column
§ Row 2 gives P ^␣Q
§ Row 4 gives ␣P ^␣Q

§ Do AND of negations of each of these formulas
§ We obtain ␣pP ^␣Qq ^ ␣p␣P ^␣Qq
§ Finally: equivalent to p␣P _Qq ^ pP _Qq by De Morgan
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Satisfiability of CNF formulas

Problem definition: Given a CNF formula can we set T or F value
to each variable to satisfy the formula?

§ Example: Consider the formula pA_␣Bq ^ pC _Bq

§ Is it satisfiable?
§ Satisfiable by setting A “ T, B “ F and C “ T
§ Known as CNF Satisfiability or simply SAT

First a bit of history
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History of Computing

1930s
§ Alan Turing invented the Turing Machine in 1936
§ Mathematical model of computable functions (as abstract

machines)
§ Basis of modern computers
§ Biography: Alan Turing: The Enigma
§ Movie: The Imitation Game

1940s and 1950s
§ Code-breaking by Allies in Bletchley Park

Go visit the National Museum of Computing
§ Should not really have been breakable

Made use of manual & hardware errors
§ Alan Turing was heavily involved
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History of Computing

1960s
§ People began to look at general ways to solve a problem,

rather than solving given instance!
§ Is pA_␣Bq ^ p␣Aq ^ pB _ Z _␣Xq satisfiable?
§ How (fast) can we check in general if a CNF formula is satisfiable?

§ Many known problems had polynomial running time
§ Actually even n4 or smaller

§ Polynomial time became accepted as standard of efficiency
§ P: The class of problems solvable in polynomial time (in size of input)

§ Claim: Any exponential (ultimately) beats any polynomial
§ 1.0000000001n ą n10000000000000000000000000 if n is large enough
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History of Computing

1970s
§ But still many problems no one knew how to solve in

polynomial time!
§ CNF satisfiability (SAT)

§ Say we have N atoms and M clauses
§ No known algorithm to solve in time polynomial in N and M
§ Brute force: does 2N truth assignments, and checks in N time

if each of the M clauses is satisfied
§ So, total running time is 2N ¨N ¨M
§ Note that the input size is N `M

§ Can we design a polynomial time algorithm for SAT?
§ Or show that such an algorithm cannot exist?
§ N P : class of problems where we can verify a potential solution

in polynomial time
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P vs. N P

P: the class of problems which we can solve in polynomial time
N P: the class of problems where we can verify a potential
solution/answer in polynomial time

Clearly, P Ď N P (solving is a (hard) way of verifying)

What about the other direction? Is P “ N P?
§ Status unknown!
§ Million dollar question

What do most people believe?
§ P is not equal to N P

Why haven’t we been able to prove it then?
§ Hard to rule out all possible polytime algorithms?
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Hardness for the class N P

N P: the class of problems where we can verify a potential
solution/answer in polynomial time

Definition: A problem is N P-hard if it is at least as hard as any
problem in N P.

More precisely, a problem X is N P-hard if any problem Y P N P
can be solved

§ using an oracle for solving X

§ plus a polynomial overhead for translating between X and Y

If P ‰ N P then a problem being N P-hard means it cannot be
solved in polynomial time!

Great, except no one knew how to show existence of a single
N P-hard problem!
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The first N P-hard problem

Cook-Levin Theorem (1971/1973):
CNF-Satisfiability (SAT) is N P-hard

How do you show a problem, say X, is N P-hard?
§ A polytime reduction from any of the known N P-hard problems, say SAT, to X

§ That is, show how you can solve SAT using an oracle for X

§ Plus a polynomial overhead for the translation

Tens of thousands of problems known to be N P-hard
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Significance of SAT

Many practical problems can be encoded into SAT
(e.g., formal verification, planning/scheduling, etc.)

A possible solution (valuation) can be verified “efficiently”

No known algorithm to solve the problem “efficiently” in all cases

In practice, SAT solvers are very efficient
(N P-hardness is the worst case)

15/26



Special cases

Let n-SAT be the SAT problem restricted to n-CNFs, i.e., where
clauses are disjunctions of n literals

§ 1-SAT is in P
§ 2-SAT is in P
§ 3-SAT is N P-hard
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Why not consider DNF instead of CNF?

Theorem: Any propositional formula can be expressed in CNF
Theorem: Any propositional formula can be expressed in DNF
Theorem: CNF satisfiability is N P-hard

How hard is DNF satisfiability?

§ Example of a DNF formula:
pA^␣B ^ Cq _ p␣X ^ Y q _ pZq

§ Is it satisfiable?
§ Trivial to check in polytime!
§ Just pick any clause, and set variables to T or F.

Why not use DNFs then?

Because changing a formula from CNF to DNF can cause
exponential blowup!
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Why not consider DNF instead of CNF?

Because changing a formula from CNF to DNF can cause
exponential blowup!

Convert pA_Bq ^ pC _Dq into DNF
Remember: P ^ pQ_Rq Ø pP ^Qq _ pP ^Rq

pA_Bq ^ pC _Dq
Ø ppA_Bq ^ Cq _ ppA_Bq ^Dq
Ø pC ^ pA_Bqq _ pD ^ pA_Bqq
Ø pC ^Aq _ pC ^Bq _ pD ^Aq _ pD ^Bq

Consider the CNF formula: pP1 _Q1q ^ ¨ ¨ ¨ ^ pPn _Qnq

Expressing this formula in DNF requires 2n clauses
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Algorithms for SAT?

Brute force for SAT with N variables and M clauses needs
2N ¨N ¨M time

§ There are 2N truth assignments

§ For each truth assignment and each clause, verify if it is satisfied in N time

Can we solve SAT faster than 2N ? Say 1.999999999N ?

Conjecture (Strong Exponential Time Hypothesis (SETH)):
SAT cannot be solved in p2´ αqN ¨ polypN `Mq time for any
constant α ą 0
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SAT solvers

Many state-of-the-art SAT solvers are based on the
Davis-Putman-Logemann-Loveland algorithm (DPLL)
Basic idea (does a lot of pruning instead of brute force):

1. Easy cases
§ Atom p only appears as either p or ␣p (but not both): assign

truth value accordingly
2. Branch on choosing a variable p and set a truth value to it

§ This choice needs to be done cleverly
§ If p “ T: remove all clauses containing p and remove all literals
␣p from clauses

§ If p “ F: remove all clauses containing ␣p and remove all
literals p from clauses

3. Keep running the above steps until
§ All clauses have been removed (all true): return SAT
§ One clause is empty (one is false): backtrack in Step 2 and

choose a different truth value for p; if it is not possible to
backtrack, return UNSAT
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SAT solvers

Apply the DPLL algorithm to
p␣p_ q _ rq ^ pp_ q _ rq ^ pp_ q _␣rq ^ p␣p_␣q _ rq

Here is a possible run of the algorithm:
p␣p_ q _ rq ^ pp_ q _ rq ^ pp_ q _␣rq ^ p␣p_␣q _ rq

p “ T
pq _ rq ^ p␣q _ rq

q “ T
prq

r “ T
SAT
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SAT Solvers

Let us use this SAT solver: https://jfmc.github.io/z3-play/

two variables, two clauses:
pp_ qq ^ p␣qq

(declare-const p Bool)
(declare-const q Bool)
(define-fun conjecture () Bool

(and (or p q) (not q))
)
(assert conjecture)
(check-sat)
(get-model)
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SAT Solvers

Let us use this SAT solver: https://jfmc.github.io/z3-play/

three variables, three clauses:
pp_ q _ rq ^ p␣p_␣qq ^ pq _␣rq

(declare-const p Bool)
(declare-const q Bool)
(declare-const r Bool)
(define-fun conjecture () Bool

(and (or p q r) (or (not p) (not q)) (or q (not r)))
)
(assert conjecture)
(check-sat)
(get-model)
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SAT Solvers

Let us use this SAT solver: https://jfmc.github.io/z3-play/

four variables, five clauses:
pp_ q _␣rq ^ pq _ r _␣sq ^ p␣p_ q _ rq ^ p␣pq ^ p␣r _ sq

(declare-const p Bool)
(declare-const q Bool)
(declare-const r Bool)
(declare-const s Bool)
(define-fun conjecture () Bool

(and (or p q (not r)) (or q r (not s)) (or (not p) q r)
(not p) (or (not r) s)

)
)
(assert conjecture)
(check-sat)
(get-model)
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SAT Solvers

Let us use this SAT solver: https://jfmc.github.io/z3-play/

five variables, eight clauses:
pp_ t_ sq ^ pq _ r _␣s_␣tq ^ p␣t_ rq ^ pp_␣q _ sq
^pp_ q _ r _␣tq ^ pq _ r _␣sq ^ pp_␣sq ^ p␣p_ q _ s_ tq

(declare-const p Bool)
(declare-const q Bool)
(declare-const r Bool)
(declare-const s Bool)
(declare-const t Bool)
(define-fun conjecture () Bool

(and (or p t s) (or q r (not s) (not t)) (or (not t) r) (or p (not q) s)
(or p q r (not t)) (or q r (not s)) (or p (not s)) (or (not p) q s t)

)
)
(assert conjecture)
(check-sat)
(get-model)
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Conclusion

What did we cover today?
§ History of Computing
§ SAT (first N P-hard problem)
§ Algorithms for SAT

Next time?
§ Propositional logic (wrap-up)
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ Syntax of propositional logic
§ Natural Deduction
§ Classical reasoning
§ Semantics
§ Equivalences
§ Provability/Validity

3/18



Syntax & Informal Semantics

Syntax:
P ::“ a | P ^ P | P _ P | P Ñ P | ␣P

Lower-case letters are atoms: p, q, r, etc.
Upper-case letters are (meta-)variables: P , Q, R, etc.

Two special atoms:
§ J which stands for True
§ K which stands for False

We also introduced four connectives:
§ P ^Q: we have a proof of both P and Q

§ P _Q: we have a proof of at least one of P and Q

§ P Ñ Q: if we have a proof of P then we have a proof of Q

§ ␣P : stands for P ÑK
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Syntax

Example of propositions:
§ “if x is a number then it is even or odd”

§ atom p: “x is a number”
§ atom q: “x is even”
§ atom r: “x is odd”
§ p Ñ q _ r

§ “if x is even then it is not odd”
§ atom p: “x is even”
§ atom q: “x is odd”
§ p Ñ ␣q

§ “if a “ b and b “ c then a “ c”
§ atom p: “a “ b”
§ atom q: “b “ c”
§ atom r: “a “ c”
§ pp^ qq Ñ r
§ or equivalently: p Ñ q Ñ r
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Precedence & Associativity

Precedence: in decreasing order of precedence ␣,^,_,Ñ.
For example:

§ ␣P _Q means p␣P q _Q

§ P ^Q_R means pP ^Qq _R

§ P ^Q Ñ Q^ P means pP ^Qq Ñ pQ^ P q

Associativity: all operators are right associative
For example:

§ P _Q_R means P _ pQ_Rq.
§ P ^Q^R means P ^ pQ^Rq.
§ P Ñ Q Ñ R means P Ñ pQ Ñ Rq.

However use parentheses around compound formulas for clarity.
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Constructive Natural Deduction

Constructive Natural Deduction rules:

K

A
rK Es

J
rJIs

A
1

....
B

A Ñ B
1 rÑ Is

A Ñ B A

B
rÑ Es

A
1

....
K

␣A
1 r␣Is

␣A A

K
r␣Es

A

A_B
r_ILs

A

B _A
r_IRs

A_B A Ñ C B Ñ C

C
r_Es

A B

A^B
r^Is

A^B

B
r^ERs

A^B

A
r^ELs
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Classical Reasoning

Classical Natural Deduction includes all the Constructive Natural
Deduction rules, plus:

A_␣A
rLEMs

␣␣A

A
rDNEs

8/18



Semantics

A valuation ϕ assigns T or F with each atom
A valuation is extended to all formulas as follows:

§ ϕpJq “ T
§ ϕpKq “ F
§ ϕpA_Bq “ T iff either ϕpAq “ T or ϕpBq “ T
§ ϕpA^Bq “ T iff both ϕpAq “ T and ϕpBq “ T
§ ϕpA Ñ Bq “ T iff ϕpBq “ T whenever ϕpAq “ T
§ ϕp␣Aq “ T iff ϕpAq “ F

Satisfaction & validity:
§ Given a valuation ϕ, we say that ϕ satisfies A if ϕpAq “ T
§ A is satisfiable if there exists a valuation ϕ on atomic

propositions such that ϕpAq “ T
§ A is valid if ϕpAq “ T for all possible valuations ϕ
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Truth Tables

We can use truth tables to check whether propositions are valid:

A B A_B

T T T
T F T
F T T
F F F

A B A^B

T T T
T F F
F T F
F F F

P Q P Ñ Q

T T T
T F F
F T T
F F T

A ␣A

T F
F T

A proposition is (semantically) valid if the last column in its truth
table only contains T
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Validity

These techniques can be used to prove the validity of propositions:
§ a Natural Deduction proof (syntactic validity)
§ a truth table with only T in the last column (semantical

validity)

We saw that:
§ a formula A is provable in Natural Deduction
§ iff A is semantically valid

This is true about the classical versions of these deduction systems
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Logical equivalences

Let A Ø B be defined as pA Ñ Bq ^ pB Ñ Aq

§ it means that A and B are logically equivalent
§ this is called a “bi-implication”
§ read as “A if and only if B”

We will now prove:
§ Distributivity of ^ over _:
pA^ pB _ Cqq Ø ppA^Bq _ pA^ Cqq

§ Double negation elimination as an equivalence: ␣␣A Ø A

You can also try proving the distributivity of _ over ^:
pA_ pB ^ Cqq Ø ppA_Bq ^ pA_ Cqq
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Provability/Validity

Provide a constructive Natural Deduction proof of the following
equivalence: pA^ pB _ Cqq Ø ppA^Bq _ pA^ Cqq

Left-to-right implication:

A ^ pB _ Cq
1

B _ C
r^ERs

A ^ pB _ Cq
1

A
r^ELs

B
2

A ^ B
r^Is

pA ^ Bq _ pA ^ Cq
r_ILs

B Ñ pA ^ Bq _ pA ^ Cq
2 rÑ Is

A ^ pB _ Cq
1

A
r^ELs

C
3

A ^ C
r^Is

pA ^ Bq _ pA ^ Cq
r_IRs

C Ñ pA ^ Bq _ pA ^ Cq
3 rÑ Is

pA ^ Bq _ pA ^ Cq
r_Es

pA ^ pB _ Cqq Ñ ppA ^ Bq _ pA ^ Cqq
1 rÑ Is
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Provability/Validity
Right-to-left implication:

pA ^ Bq _ pA ^ Cq
1

Π1 Π2

A
r_Es

pA ^ Bq _ pA ^ Cq
1

Π3 Π4

B _ C
r_Es

A ^ pB _ Cq
r^Is

ppA ^ Bq _ pA ^ Cqq Ñ pA ^ pB _ Cqq
1 rÑ Is

where Π1 is: where Π2 is:

A ^ B
2

A
r^ELs

pA ^ Bq Ñ A
2 rÑ Is

A ^ C
3

A
r^ELs

pA ^ Cq Ñ A
3 rÑ Is

where Π3 is: where Π4 is:

A ^ B
4

B
r^ERs

B _ C
r_ILs

pA ^ Bq Ñ pB _ Cq
4 rÑ Is

A ^ C
5

C
r^ERs

B _ C
r_IRs

pA ^ Cq Ñ pB _ Cq
5 rÑ Is
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Provability/Validity

Prove that pA^ pB _ Cqq Ø ppA^Bq _ pA^ Cqq is valid using a
truth table

A B C B _ C A ^ pB _ Cq A ^ B A ^ C pA ^ Bq _ pA ^ Cq

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

The 5th and last columns are identical, so the two formulas are
equivalent

15/18



Provability/Validity

Provide a classical Natural Deduction proof of the following
equivalence: ␣␣A Ø A

␣␣A
1

A
rDNEs

␣␣A Ñ A
1 rÑ Is

␣A
3

A
2

K
r␣Es

␣␣A
3 r␣Is

A Ñ ␣␣A
2 rÑ Is

␣␣A Ø A
r^Is
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Provability/Validity

Prove that ␣␣A Ø A is valid using a truth table

A ␣A ␣␣A

T F T
F T F

The 1st and last columns are identical, so the two formulas are
equivalent
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Conclusion

What did we cover today?
§ Syntax of propositional logic
§ Natural Deduction
§ Classical reasoning
§ Semantics
§ Equivalences
§ Provability/Validity

Next time?
§ Predicate logic (syntax)
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ Syntax of Predicate Logic

Further reading:
§ Chapter 7 of

http://leanprover.github.io/logic_and_proof/

3/21

http://leanprover.github.io/logic_and_proof/


Recap: Propositional Logic

Propositions: Facts (that can in principle be true or false)
§ 2 is an even number
§ 2 is an odd number
§ P “ N P
§ Mind the gap! (not a proposition)

Grammar: P ::“ a | P ^ P | P _ P | P Ñ P | ␣P
where a ranges over atomic propositions.

Two special atoms: J stands for True, K stands for False

Four connectives:
§ P ^Q: we have a proof of both P and Q
§ P _Q: we have a proof of at least one of P and Q
§ P Ñ Q: if we have a proof of P then we have a proof of Q
§ ␣P : stands for P ÑK
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Recap: Proofs

Natural Deduction

introduction/elimination rules

natural proofs

A
1

....
B

A Ñ B
1 rÑ Is
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Expressiveness of Propositional Logic

Famous derivation in logic:
§ All men are mortal
§ Socrates is a man
§ Therefore, Socrates is mortal

Can we express this in propositional logic?

Another example:
§ Every even natural number is not odd
§ x is even
§ x is not odd

Can we express this in propositional logic?
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Beyond Propositional Logic

Propositional logic allows us to state facts
§ does not allow stating properties of and relations between

“objects”
§ e.g., the property of numbers of being even, or odd

This brings us to a richer logic called predicate logic
§ contains propositional logic
§ also known as first-order logic
§ Predicate logic allows us to reason about members of a

(non-empty) domain
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Beyond Propositional Logic

For example, the argument:
§ All men are mortal
§ Socrates is a man
§ Therefore, Socrates is mortal

includes the following components:
§ Domain = Men
§ Socrates is one member of this domain
§ Predicates are “being a man” and “being mortal”
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Beyond Propositional Logic

Another example: consider a database with 3 tables

Student
sid name
0 Alice
1 Bob

Module
mid name
0 Math
1 OOP

Enroll
sid mid
0 0
1 1

These 3 tables can be seen as 3 relations:
§ Studentpsid, nameq: predicate Student relates student ids and names
§ Modulepmid, nameq: predicate Module relates module ids and names
§ Enrollpsid, midq: predicate Enroll relates student and module ids

Domain = all possible values
A formula can be seen as a query
For example: find the Students x enrolled in the Math module

§ Dy.Dz.Studentpy, xq ^Modulepz, Mathq ^ Enrollpy, zq
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Key ingredients of Predicate Logic

The key ingredients of predicate logic are
§ predicates, quantifiers, variables, functions, and constants

Famous derivation in logic:
§ All men are mortal
§ Socrates is a man
§ Therefore, Socrates is mortal

We can write this argument as @x.pppxq Ñ qpxqq, ppsq $ qpsq
§ Predicates:

§ ppxq which states that x is a man
§ qpxq which states that x is mortal

§ Quantifier: The “for all” symbol @
§ Variable: x to denote an element of the domain
§ Constant: s which stands for Socrates

10/21



Key ingredients of Predicate Logic

Domain (also called universe)
§ Non-empty set of objects/entities (individuals) to reason about
§ Example: set of 1st year students

Variables
§ Symbols to represent (as yet unknown) objects in the domain
§ Usually denoted by x, y, z, . . .
§ Similar to variables from programming languages

Quantifiers
§ universal quantifier
@x. ¨ ¨ ¨: “for all elements x of the domain”

§ existential quantifier
Dx. ¨ ¨ ¨: “there exists an element x of the domain such that”

§ quantify over elements of the domain
§ precedence: lower than the other connectives
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Key ingredients of Predicate Logic

Functions
§ Build an element of the domain from elements of the domain
§ Usually denoted by f, g, h, . . .
§ Different functions can have different numbers of arguments
§ The number of arguments of a function is called its arity
§ A function symbol of arity 1 can only be applied to 1 argument,

A function symbol of arity 2 can only be applied to 2
arguments, etc.

§ Notation: We sometimes write fk when we want to indicate
that the function symbol f has arity k

Constants
§ Specific objects in the domain
§ Functions of arity 0
§ Usually denoted by a, b, c, . . .
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Key ingredients of Predicate Logic

Let the domain be N.

Provide examples of function symbols, along with their arities

§ 0, 1, 2, . . . are constant symbols (nullary function symbols)
§ add: the binary addition function
§ addpm, nq: addition applied to the two expressions m and n

§ square: the unary square function
§ squarepmq: square applied to the expression m
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Key ingredients of Predicate Logic

Predicates
§ Propositions are facts/statements, which may be true or false
§ A predicate evaluates to true/false depending on its arguments
§ Predicates can be seen as functions from elements of the

domain to propositions
§ Example: ppxq means “predicate p is true for variable x”
§ Example: ppaq means “predicate p is true for constant a”

Examples of formulas in predicate logic
§ @x.pppxq ^ qpxqq

§ for all x it is true that ppxq and qpxq

§ p@x.ppxqq Ñ ␣@x.qpxq
§ if ppxq is true for all x, then qpxq is not true for all x

§ Dx.pppxq _ ␣qpxqq
§ there is some x for which ppxq is true or qpxq is not true
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More examples in predicate calculus

Domain is cars, and we have 3 predicate symbols
§ fpxq = “x is fast”
§ rpxq = “x is red”
§ ppxq = “x is purple”

How to express the following sentences in predicate logic?
§ All cars are fast: @x.fpxq

§ All red cars are fast: @x.rpxq Ñ fpxq
§ Some red cars are fast: Dx.rpxq ^ fpxq

§ Wrong answer: Dx.rpxq Ñ fpxq

§ There are no red cars: ␣Dx.rpxq
§ Alternative answer: @x.␣rpxq

§ No fast cars are purple: ␣Dx.fpxq ^ ppxq
§ Alternative answer: @x.fpxq Ñ ␣ppxq

15/21



Connections between D and @

To disprove a “for all” proposition, we need to find an x for which
the predicate is false

§ ␣p@x.ppxqq is the same as Dx.␣ppxq

To disprove a “there exists” proposition, we need to show that the
predicate is false for all x

§ ␣pDx.ppxqq is the same as @x.␣ppxq
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Arity of predicates

The arity of a predicate is the number of arguments it takes

Unary predicates (arity 1) represent facts about individuals
§ ppxq = “x is prime”

Binary predicates (arity 2) represent relationships between
individuals, i.e., they represent relations

§ Example: mpa, bq = “a is married to b”
§ Doesn’t have to be symmetric!
§ Example: lpa, bq = “a likes b”

What are nullary predicates (arity 0)?
§ Atomic propositions!

Notation: We sometimes write pk when we want to indicate that
the predicate symbol p has arity k
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Syntax

The syntax of predicate logic is defined by the following grammar:

t ::“ x | fpt, . . . , tq
P ::“ ppt, . . . , tq | ␣P | P ^ P | P _ P | P Ñ P | @x.P | Dx.P

where:
§ x ranges over variables
§ f ranges over function symbols
§ fpt1, . . . , tnq is a well-formed term only if f has arity n

§ p ranges over predicate symbols
§ ppt1, . . . , tnq is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of
predicate symbols, along with their arities, is called a signature.
The scope of a quantifier extends as far right as possible. E.g.,
P ^ @x.ppxq _ qpxq is read as P ^ @x.pppxq _ qpxqq
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Examples

Consider the following domain and signature:
§ Domain: N
§ Functions: 0, 1, 2, . . . (arity 0); ` (arity 2)
§ Predicates: prime, even, odd (arity 1); “, ą, ě (arity 2)

Express the following sentences in predicate logic
§ All prime numbers are either 2 or odd.
@x.primepxq Ñ x “ 2_ oddpxq

§ Every even number is equal to the sum of two primes.
@x.evenpxq Ñ Dy.Dz.primepyq ^ primepzq ^ x “ y ` z

§ There is no number greater than all numbers.
␣Dx.@y.x ą y

§ All numbers have a number greater than them.
@x.Dy.y ą x

19/21



Natural Deduction rules for @ and D?

Propositional logic: Each connective has two inference rules
§ One for introduction
§ One for elimination

Introduction and elimination rules for @ and D?

?
@x.P

r@Is

@y.P
?

r@Es

?
Dx.P

rDIs

Dy.P
?

rDEs
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Conclusion

What did we cover today?
§ Predicate logic (syntax)

Next time?
§ Predicate logic (Natural Deduction)
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ Natural Deduction proofs for Predicate Logic
§ @{D rules
§ substitution

Further reading:
§ Chapter 8 of

http://leanprover.github.io/logic_and_proof/
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Recap: Beyond Propositional Logic

Famous derivation in logic:
§ All men are mortal
§ Socrates is a man
§ Therefore, Socrates is mortal

Cannot be expressed in propositional logic
We introduced:

§ predicates, quantifiers, variables, functions, and constants
We can write this argument as @x.pppxq Ñ qpxqq, ppsq $ qpsq

§ Domain: people
§ Predicates: ppxq = “x is a man”; qpxq = “x is mortal”
§ Quantifier: The “for all” symbol @
§ Variable: x to denote an element of the domain
§ Constant: s which stands for Socrates
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Recap: Syntax

The syntax of predicate logic is defined by the following grammar:

t ::“ x | fpt, . . . , tq
P ::“ ppt, . . . , tq | ␣P | P ^ P | P _ P | P Ñ P | @x.P | Dx.P

where:
§ x ranges over variables
§ f ranges over function symbols
§ fpt1, . . . , tnq is a well-formed term only if f has arity n
§ p ranges over predicate symbols
§ ppt1, . . . , tnq is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of
predicate symbols, along with their arities, is called a signature.
The scope of a quantifier extends as far right as possible. E.g.,
P ^ @x.ppxq _ qpxq is read as P ^ @x.pppxq _ qpxqq
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Recap: Examples

Consider the following domain and signature:
§ Domain: N
§ Functions: 0, 1, 2, . . . (arity 0); ` (arity 2)
§ Predicates: prime, even, odd (arity 1); “, ą, ě (arity 2)

Express the following sentences in predicate logic
§ All prime numbers are either 2 or odd.
@x.primepxq Ñ x “ 2_ oddpxq

§ Every even number is equal to the sum of two primes.
@x.evenpxq Ñ Dy.Dz.primepyq ^ primepzq ^ x “ y ` z

§ There is no number greater than all numbers.
␣Dx.@y.x ě y

§ All numbers have a number greater than them.
@x.Dy.y ą x

6/23



One more example (from the book – section 7.6.2)

Domain is people, and we have 6 predicates

politicianpxq richpxq crazypxq trustspx, yq knowspx, yq related-topx, yq

Express the following sentences in predicate logic
§ Nobody trusts a politician.
␣Dx.Dy.politicianpyq ^ trustspx, yq

§ Anyone who trusts a politician is crazy.
@x.pDy.politicianpyq ^ trustspx, yqq Ñ crazypxq

§ Everyone knows someone who is related to a politician.
@x.Dy.knowspx, yq ^ Dz.politicianpzq ^ related-topy, zq

§ Everyone who is rich is either a politician or knows a politician.
@x.richpxq Ñ politicianpxq _ Dy.knowspx, yq ^ politicianpyq
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Inference rules for @ and D?

Propositional logic: Each connective has at least 2 inference rules
§ At least 1 for introduction
§ At least 1 for elimination

Introduction and elimination rules for @ and D?
?

@y.P
r@Is

@x.P
?

r@Es

?
Dy.P

rDIs
Dx.P

?
rDEs
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Free & Bound Variables

Free variables and Bound variables:
Bound variables:

§ Consider the formula @x.evenpxq _ oddpxq
Here the variable x is bound by the quantifier @

§ @x.evenpxq _ oddpxq is considered the same as
@y.evenpyq _ oddpyq
Renaming a bound variable doesn’t change the meaning!

Free variables:
§ Consider the formula @y.x ď y

§ y is a bound variable and x is a free variable
§ variables are free if they are not bound
§ @y.x ď y is the same as @z.x ď z

§ @y.x ď y is not the same as @y.w ď y

§ Renaming a free variable changes the meaning!
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Free & Bound Variables

The scope of a quantified formula of the form @x.P or Dx.P is P.
The quantifier are said to bind x.

Bound variables: a variable x occurs bound in a formula, if it
occurs in the scope of a quantifier quantifying x

Free variables: a variable x occurs free in a formula, if it does not
occur in the scope of a quantifier quantifying x

The set of variables occurring free/bound in a terms and formulas is
recursively computed as follows:

fvpxq = txu
fvpfpt1, . .., tnqq = fvpt1q Y . .. Y fvptnq

fvpppt1, . .., tnqq = fvpt1q Y . .. Y fvptnq

fvp␣Pq = fvpPq
fvpP1 ^ P2q = fvpP1q Y fvpP2q
fvpP1 _ P2q = fvpP1q Y fvpP2q
fvpP1 Ñ P2q = fvpP1q Y fvpP2q
fvp@x.Pq = fvpPqztxu
fvpDx.Pq = fvpPqztxu

bvpppt1, . .., tnqq = ∅
bvp␣Pq = bvpPq
bvpP1 ^ P2q = bvpP1q Y bvpP2q
bvpP1 _ P2q = bvpP1q Y bvpP2q
bvpP1 Ñ P2q = bvpP1q Y bvpP2q
bvp@x.Pq = bvpPq Y txu
bvpDx.Pq = bvpPq Y txu
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Free & Bound Variables

What are the free variables of the following formulas
§ P1 “ poddpxq ^ Dy.y ă x^ oddpyqq

fvpP1q “ txu

§ P2 “ poddpxq ^ x ą y ^ Dy.y ă x^ oddpyqq
fvpP2q “ tx, yu

§ P3 “ p@x.oddpxq ^ x ą y ^ Dy.y ă x^ oddpyqq
fvpP3q “ tyu

Note: In poddpxq ^ x ą y ^ Dy.y ă x^ oddpyqq the green
occurrence of y is not the same variable as the red occurrence of y.

The formula poddpxq ^ x ą y ^ Dy.y ă x^ oddpyqq is considered
the same as poddpxq ^ x ą y ^ Dz.z ă x^ oddpzqq
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Inference rules for @ and D?

Propositional logic: Each connective has at least 2 inference rules
§ At least 1 for introduction
§ At least 1 for elimination

Introduction and elimination rules for @ and D?
?

@y.P
r@Is

@x.P
?

r@Es

?
Dy.P

rDIs
Dx.P

?
rDEs

WARNING �

Trickier than inference rules from propositional logic!
We need to be careful with free and bound variables!
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Inference Rule for “for all elimination” – 1st attempt

@x.P
?

r@Es

What can we conclude from the fact that P is true for all x?

Predicate P is true for all elements x of the domain

§ For any element of the domain t, we can deduce that P is true
where x is replaced by t is true

§ This “replacing” operation is a substitution operation as seen
in lecture 2.

§ However, we now have to be careful with free/bound variables.
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Substitution

Substitution is defined recursively on terms and formulas:
Prxzts substitute all the free occurrences of x in P with t.
1st attempt (WRONG)

xrxzts = t
xryzts = x
pfpt1, . . . , tnqqrxzts = fpt1rxzts, . . . , tnrxztsq
pppt1, . . . , tnqqrxzts = ppt1rxzts, . . . , tnrxztsq
p␣Pqrxzts = ␣Prxzts
pP1 ^ P2qrxzts = P1rxzts ^ P2rxzts
pP1 _ P2qrxzts = P1rxzts _ P2rxzts
pP1 Ñ P2qrxzts = P1rxzts Ñ P2rxzts
p@x.Pqrxzts = @x.P
pDx.Pqrxzts = Dx.P
p@y.Pqrxzts = @y.Prxzts
pDy.Pqrxzts = Dy.Prxzts

Why is this wrong? p@y.y ą xqrxzys would return @y.y ą y, where
the free y is now bound! The free y got captured! The red
occurrences of y stand for different variables than the green ones.

14/23



Substitution

Substitution is defined recursively on terms and formulas:
Prxzts substitute all the free occurrences of x in P with t.
2nd attempt (CORRECT)

xrxzts = t
xryzts = x
pfpt1, . . . , tnqqrxzts = fpt1rxzts, . . . , tnrxztsq
pppt1, . . . , tnqqrxzts = ppt1rxzts, . . . , tnrxztsq
p␣Pqrxzts = ␣Prxzts
pP1 ^ P2qrxzts = P1rxzts ^ P2rxzts
pP1 _ P2qrxzts = P1rxzts _ P2rxzts
pP1 Ñ P2qrxzts = P1rxzts Ñ P2rxzts
p@x.Pqrxzts = @x.P
pDx.Pqrxzts = Dx.P
p@y.Pqrxzts = @y.Prxzts, if y R fvptq
pDy.Pqrxzts = Dy.Prxzts, if y R fvptq

The additional conditions ensure that free variables do not get
captured.
These conditions can always be met by silently renaming
bound variables before substituting. 15/23



Inference Rule for “for all elimination” – 2nd attempt

The correct rule is:
@x.P

Prxzts
r@Es

Condition: fvptq must not clash with any bound variables of P
Example: consider the formula @x.Dy.y ą x

§ True over domain of natural numbers
§ P is Dy.y ą x

§ Let t be y

§ This condition guarantees that we can do the substitution
§ Substituting x with y without renaming bound variables would

give the wrong answer (see previous slide)
§ Therefore, we first rename bound variables that clash with

fvptq, i.e., with y: Dz.z ą x

§ Then, we substitute: Dz.z ą y
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Inference Rule for “for all introduction”

?
@x.P

r@Is

When can we conclude P is true for all x?
If we have proved P for a “general/representative/typical"
variable

Prxzys
@x.P

r@Is

Condition: y must not be free in any not-yet-discharged hypothesis
or in @x.P
What could go wrong without this condition?
Otherwise, given the assumption y ą 2, we could derive @x.x ą 2,
which is clearly wrong.
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Inference Rule for “exists introduction”

?
Dx.P

rDIs

When can we conclude P is true for some x?
If we have proved predicate P for an element of the domain

Prxzts
Dx.P

rDIs

Condition: fvptq must not clash with bvpPq
Example: Consider the predicate P “ p@y.y “ xq

§ Without the substitution conditions Prxzys would be true
§ We could then deduce Dx.@y.y “ x, i.e., numbers are all equal

to each other — obviously incorrect!
§ The substitution conditions prevents such captures
§ rDIs’s condition guarantees that the substitution conditions hold 18/23



Inference Rule for “exists elimination”

Dx.P
?

rDEs

What can we conclude from the fact that P is true for some x?
We know that it holds about some element of the domain,
but we do not know which

Dx.P

Prxzys
1

....
Q

Q
1 rDEs

Condition: y must not be free in Q or in not-yet-discharged
hypotheses or in Dx.P
This rule is similar to OR-elimination!
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All four inference rules in one slide

Prxzys

@x.P
r@Is

Condition: y must not be free in any not-yet-discharged hypothesis or in @x.P

@x.P

Prxzts
r@Es

Condition: fvptq must not clash with bvpPq

Prxzts

Dx.P
rDIs

Condition: fvptq must not clash with bvpPq

Dx.P

Prxzys
1

....
Q

Q
1 rDEs

Condition: y must not be free in Q or in not-yet-discharged hypotheses or in Dx.P
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A simple proof

Prove that p@z.ppzqq Ñ @x.ppxq _ qpxq

We use backward reasoning

@z.ppzq
1

ppyq
r@Es

ppyq _ qpyq
r_ILs

@x.ppxq _ qpxq
r@Is

p@z.ppzqq Ñ @x.ppxq _ qpxq
1 rÑ Is

Conditions:
§ y does not occur free in not-yet-discharged hypotheses or in
@x.ppxq _ qpxq

§ y does not clash with bound variables in ppzq
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A simple proof

More generally, we can prove:

@z.P
1

P rxzys
r@Es

P rxzys _Qrxzys
r_ILs

@x.P _Q
r@Is

p@z.P q Ñ @x.P _Q
1 rÑ Is

We assume that y does not occur in P or Q
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Conclusion

What did we cover today?
§ Natural Deduction proofs for Predicate Logic
§ @{D rules
§ substitution

Next time?
§ Natural Deduction proofs for Predicate Logic – continued
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ Natural Deduction proofs for Predicate Logic
§ side conditions

Further reading:
§ Chapter 8 of

http://leanprover.github.io/logic_and_proof/
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Recap: Syntax

The syntax of predicate logic is defined by the following grammar:

t ::“ x | fpt, . . . , tq
P ::“ ppt, . . . , tq | ␣P | P ^ P | P _ P | P Ñ P | @x.P | Dx.P

where:
§ x ranges over variables
§ f ranges over function symbols
§ fpt1, . . . , tnq is a well-formed term only if f has arity n
§ p ranges over predicate symbols
§ ppt1, . . . , tnq is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of
predicate symbols, along with their arities, is called a signature.
The scope of a quantifier extends as far right as possible. E.g.,
P ^ @x.ppxq _ qpxq is read as P ^ @x.pppxq _ qpxqq
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Recap: Substitution

Substitution is defined recursively on terms and formulas:
Prxzts substitute all the free occurrences of x in P with t.

xrxzts = t
xryzts = x
pfpt1, . . . , tnqqrxzts = fpt1rxzts, . . . , tnrxztsq
pppt1, . . . , tnqqrxzts = ppt1rxzts, . . . , tnrxztsq
p␣Pqrxzts = ␣Prxzts
pP1 ^ P2qrxzts = P1rxzts ^ P2rxzts
pP1 _ P2qrxzts = P1rxzts _ P2rxzts
pP1 Ñ P2qrxzts = P1rxzts Ñ P2rxzts
p@x.Pqrxzts = @x.P
pDx.Pqrxzts = Dx.P
p@y.Pqrxzts = @y.Prxzts, if y R fvptq
pDy.Pqrxzts = Dy.Prxzts, if y R fvptq

The additional conditions ensure that free variables do not get
captured.
These conditions can always be met by silently renaming
bound variables before substituting.
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Recap: @ & D elimination and introduction rules

Prxzys

@x.P
r@Is

Condition: y must not be free in any not-yet-discharged hypothesis or in @x.P

@x.P

Prxzts
r@Es

Condition: fvptq must not clash with bvpPq

Prxzts

Dx.P
rDIs

Condition: fvptq must not clash with bvpPq

Dx.P

Prxzys
1

....
Q

Q
1 rDEs

Condition: y must not be free in Q or in not-yet-discharged hypotheses or in Dx.P
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Inference Rule for “for all elimination”

@x.P
Prxzts

r@Es

Condition: fvptq must not clash with bvpPq
Example: consider the formula @x.Dy.y ą x

§ True over domain of natural numbers
§ P is Dy.y ą x
§ Let t be y
§ This condition guarantees that we can do the substitution
§ Substituting x with y without renaming bound variables would

give the wrong answer
§ Therefore, we first rename bound variables that clash with

fvptq, i.e., with y: Dz.z ą x
§ Then, we substitute: Dz.z ą y
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Inference Rule for “for all elimination”

More precisely: Assume that from @x.Dy.y ą x, we want to derive
a number greater than y.

We would use the following rule:

@x.Dy.y ą x

pDy.y ą xqrxzys
r@Es

However, without renaming the bound y, Prxzys is undefined

Therefore, we rename the bound variable just before performing the
substitution:

@x.Dy.y ą x

Dz.z ą y
r@Es
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Inference Rule for “for all introduction”

Prxzys
@x.P

r@Is

We conclude P is true for all x if we have proved P for a
“general/representative/typical" variable

Condition: y must not be free in any not-yet-discharged hypothesis
or in @x.P

What could go wrong without this condition?

§ Otherwise, given the assumption x ą 2, we could derive
@x.x ą 2, which is clearly wrong.

§ We could also derive @x.@y.x ą 0 Ñ y ą 0, which is also
clearly wrong.
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Inference Rule for “for all introduction”

More precisely: without this condition we would be able to derive

x ą 2
1

@x.x ą 2
r@Is

x ą 2 Ñ @x.x ą 2
1 rÑ Is

WARNING � Note that this is not a correct use of the r@Is rule
because x is free in x ą 2, which is not-yet-discharged when the
r@Is rule is applied

However, it is okay for the variable to appear in an assumption that
is discharged above the r@Is rule:

x ą 2
1

x ą 2 Ñ x ą 2
1 rÑ Is

@x.x ą 2 Ñ x ą 2
r@Is
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Inference Rule for “for all introduction”

How can we make checking this condition more tractable?
Going backward, we must ensure such variables

§ are not free in the hypotheses we have introduced and
discharged at the time r@Is is used,

§ are not free in the universally quantified formula.
We record those hypotheses in a context as follows:

y ą 2
@x.x ą 2

r@Is

x ą 2 Ñ @x.x ą 2
1 rÑ Is

Context:
§ 1: x ą 2

We cannot pick x as it occurs in our context
We must pick a “fresh” variable not free in the context or in @x.x ą 2
We cannot finish this proof now
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Inference Rule for “for all introduction”

Prove @x.x ą 2 Ñ x ą 2 backward using contexts

Here is a proof:
x ą 2

1

x ą 2 Ñ x ą 2
1 rÑ Is

@x.x ą 2 Ñ x ą 2
r@Is

Context:
§ 1: x ą 2

We can pick any variable we want as the context is empty and our
conclusion does not have any free variables
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Inference Rule for “for all introduction”

What could happen if we could pick a variable free in the
conclusion?

If we could pick a variable free in the conclusion, we could derive:

x ą 0
1

x ą 0 Ñ x ą 0
1 rÑ Is

@y.x ą 0 Ñ y ą 0
r@Is

@x.@y.x ą 0 Ñ y ą 0
r@Is

WARNING � Note that this is not a correct use of the r@Is rule
because x is free the conclusion @y.x ą 0 Ñ y ą 0

13/25



Inference Rule for “for all introduction”

The rule’s condition forces us to pick a different variable:

y ą 0
x ą 0 Ñ y ą 0

1 rÑ Is

@y.x ą 0 Ñ y ą 0
r@Is

@x.@y.x ą 0 Ñ y ą 0
r@Is

We cannot finish this proof now
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Inference Rule for “exists introduction”

Prxzts
Dx.P

rDIs

We conclude P is true for some x if we have proved predicate P for
an element of the domain

Condition: fvptq must not clash with bvpPq

Example: Consider the predicate P “ p@y.y “ xq

§ Without the substitution conditions Prxzys would be true
§ We could then deduce Dx.@y.y “ x, i.e., numbers are all equal

to each other — obviously incorrect!
§ The substitution conditions prevents such captures
§ rDIs’s condition guarantees that the substitution conditions hold
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Inference Rule for “exists introduction”

As for “for all elimination”, we rename the bound variable just
before performing the substitution.

For example if we know that y is the smallest number:

@z.y ď z

Dx.@y.x ď y
rDIs
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Inference Rule for “exists elimination”

Dx.P

Prxzys
1

....
Q

Q
1 rDEs

From the fact that P is true for some x we know that it holds
about some element of the domain, but we do not know which

Condition: y must not be free in Q or in not-yet-discharged
hypotheses or in Dx.P

This rule is similar to OR-elimination!
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Inference Rule for “exists elimination”

What could go wrong without this condition?
Assume for the sake of this example that x ď y is defined as ␣y ă x

Without the condition we could prove:

Dx.@y.x ď y
2

0 ă z
1
@y.z ď y

3

z ď 0
r@Es

K
r␣Es

K
3 rDEs

␣Dx.@y.x ď y
2 r␣Is

0 ă z Ñ ␣Dx.@y.x ď y
1 rÑ Is

WARNING � Note that this is not a correct use of the rDEs rule
because z is free in 0 ă z, which is not-yet-discharged when the
rDEs rule is applied
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Inference Rule for “exists elimination”

Similarly, without the condition we could prove:

0 ă z
1
Dx.@y.x ď y

2
@y.z ď y

3

z ď 0
r@Es

z ď 0
3 rDEs

K
r␣Es

␣Dx.@y.x ď y
2 r␣Is

0 ă z Ñ ␣Dx.@y.x ď y
1 rÑ Is

WARNING � Note that this is not a correct use of the rDEs rule
because z is free in z ď 0, the conclusion of the instance of the
rDEs rule
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Inference Rule for “exists elimination”

We use contexts to make checking this condition more tractable
For example:

Dx.@y.x ď y
2

0 ă z
1

z ď 0
K

r␣Es

K
3 rDEs

␣Dx.@y.x ď y
2 r␣Is

0 ă z Ñ ␣Dx.@y.x ď y
1 rÑ Is

Context:
§ 1: 0 ă z
§ 2: Dx.@y.x ď y
§ 3: @y.w ď y

We cannot pick z anymore as it occurs free in the context
We must pick a fresh variable w not free in the context (1 and 2), the
conclusion K, or Dx.@y.x ď y

We cannot conclude our proof anymore
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Inference Rule for “exists elimination”

What could happen if we could pick a variable free in the D formula?
Let us assume for the sake of this example that we can use the
following rule

t ă t

K
rIRREFLs

If we could pick a variable free in the D formula, we could derive:

Dx.Dy.x ă y
1
Dy.x ă y

2
x ă x

3

K
rIRREFLs

K
3 rDEs

K
2 rDEs

␣Dx.Dy.x ă y
1 r␣Is

WARNING � Note that this is not a correct use of the rDEs rule
because x is free in Dy.x ă y
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Another Natural Deduction proof with contexts

Prove that p@x.ppxqq Ñ p@y.qpyqq Ñ @z.ppzq ^ qpzq
Here is a proof:

@x.ppxq
1

ppzq
r@Es

@y.qpyq
2

qpzq
r@Es

ppzq ^ qpzq
r^Is

@z.ppzq ^ qpzq
r@Is

p@y.qpyqq Ñ @z.ppzq ^ qpzq
2 rÑ Is

p@x.ppxqq Ñ p@y.qpyqq Ñ @z.ppzq ^ qpzq
1 rÑ Is

Context:
§ 1: @x.ppxq
§ 2: @y.qpyq

z does not occur free in the context or in the conclusion
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Formal verification

Predicate Logic is more expressive and more convenient than
Propositional Logic

§ to do Mathematics
§ to do program verification, i.e., to formally/mathematically

verify that a program satisfies some formal/mathematical
specification

Simple example: let the domain be N and the signature be:
§ predicates: ě of arity 2
§ functions: max of arity 2; and 0, 1, 2, . . . of arity 0

Let us define the following function:
max3pt1, t2, t3q stands for maxpt1, maxpt2, t3qq

A specification for max might be:

@x.@y.maxpx, yq ě x^ maxpx, yq ě y
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Formal verification

While a specification for max3 might be:

@x.@y.@z.max3px, y, zq ě x^ max3px, y, zq ě y ^ max3px, y, zq ě z

Prove that max3 satisfies this specification using Natural Deduction

@x.@y.maxpx, yq ě x

@y.maxpu, yq ě u
r@Es

max3pu, v, wq ě u
r@Es

. . .

max3pu, v, wq ě u^ max3pu, v, wq ě v ^ max3pu, v, wq ě w
r^Is

@z.max3pu, v, zq ě u^ max3pu, v, zq ě v ^ max3pu, v, zq ě z
r@Is

@y.@z.max3pu, y, zq ě u^ max3pu, y, zq ě y ^ max3pu, y, zq ě z
r@Is

@x.@y.@z.max3px, y, zq ě x^ max3px, y, zq ě y ^ max3px, y, zq ě z
r@Is

We skipped some parts of the proof. For the missing part, we also
need to assume that ě is transitive.

24/25



Conclusion

What did we cover today?
§ Natural Deduction proofs for Predicate Logic
§ side conditions

Further reading:
§ Chapter 8 of

http://leanprover.github.io/logic_and_proof/
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

§ Semantics of Predicate Logic
§ Models
§ Variable valuations
§ Satisfiability & validity

Further reading:
§ Chapter 10 of

http://leanprover.github.io/logic_and_proof/
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Recap: Syntax

The syntax of predicate logic is defined by the following grammar:

t ::“ x | fpt, . . . , tq
P ::“ ppt, . . . , tq | ␣P | P ^ P | P _ P | P Ñ P | @x.P | Dx.P

where:
§ x ranges of variables
§ f ranges over function symbols
§ fpt1, . . . , tnq is a well-formed term only if f has arity n
§ p ranges over predicate symbols
§ ppt1, . . . , tnq is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of
predicate symbols, along with their arities, is called a signature.
The scope of a quantifier extends as far right as possible. E.g.,
P ^ @x.ppxq _ qpxq is read as P ^ @x.pppxq _ qpxqq
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Recap: Substitution

Substitution is defined recursively on terms and formulas:
Prxzts substitute all the free occurrences of x in P with t.

xrxzts = t
xryzts = x
pfpt1, . . . , tnqqrxzts = fpt1rxzts, . . . , tnrxztsq
pppt1, . . . , tnqqrxzts = ppt1rxzts, . . . , tnrxztsq
p␣Pqrxzts = ␣Prxzts
pP1 ^ P2qrxzts = P1rxzts ^ P2rxzts
pP1 _ P2qrxzts = P1rxzts _ P2rxzts
pP1 Ñ P2qrxzts = P1rxzts Ñ P2rxzts
p@x.Pqrxzts = @x.P
pDx.Pqrxzts = Dx.P
p@y.Pqrxzts = @y.Prxzts, if y R fvptq
pDy.Pqrxzts = Dy.Prxzts, if y R fvptq

The additional conditions ensure that free variables do not get
captured.
These conditions can always be met by silently renaming
bound variables before substituting.
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Recap: @ & D elimination and introduction rules

Natural Deduction rules for quantifiers:

Prxzys

@x.P
r@Is

@x.P
Prxzts

r@Es
Prxzts

Dx.P
rDIs

Dx.P

Prxzys
1

....
Q

Q
1 rDEs

Condition:
§ for r@Is: y must not be free in any not-yet-discharged hypothesis or in
@x.P

§ for r@Es: fvptq must not clash with bvpPq
§ for rDIs: fvptq must not clash with bvpPq
§ for rDEs: y must not be free in Q or in not-yet-discharged hypotheses or

in Dx.P
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Recap: Example of a simple proof

here is a proof of p@z.ppzqq Ñ @x.ppxq _ qpxq.

@z.ppzq
1

ppyq
r@Es

ppyq _ qpyq
r_ILs

@x.ppxq _ qpxq
r@Is

p@z.ppzqq Ñ @x.ppxq _ qpxq
1 rÑ Is

Conditions:
§ y does not occur free in not-yet-discharged hypotheses or in
@x.ppxq _ qpxq

§ y does not clash with bound variables in ppzq
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Interpretation of Predicate & Function Symbols

Semantics: Assigning meaning/interpretations to formulas
Earlier in the module: a particular semantics for propositional logic

§ Each proposition has a meaning (a truth value) of T or F
§ Used truth tables to check semantic validity

We now extend this particular semantics to predicate logic
§ Propositional logic constructs are interpreted similarly
§ In addition, we need to interpret

§ predicate & function symbols
§ quantifiers

Predicate symbols: for example, given the domain N and a unary
predicate symbol even, what is the meaning of even?

§ to state that a number is 0, 2, 4, . . .?
§ is it always obvious?
§ what if we had a predicate symbol small?
§ what does that mean?
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Interpretation of Predicate & Function Symbols

Given a domain D and a predicate symbol p of arity n

§ p is interpreted by a n-ary relation Rp

§ of the form txd1
1, . . . , d1

ny, xd
2
1, . . . , d2

ny, . . . u

§ where each di
j is in D

§ we write: Rp P 2Dn or Rp Ď Dn

For example
§ a meaningful interpretation for even would be

§ tx0y, x2y, x4y, . . . u

§ a meaningful interpretation for odd would be
§ tx1y, x3y, x5y, . . . u

§ a meaningful interpretation for prime would be
§ tx2y, x3y, x5y, . . . u
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Interpretation of Predicate & Function Symbols

Function symbols: for example, given the domain N and a binary
function symbol add, what is the meaning of add?

§ is it addition?
§ is it always obvious?
§ what if we had a binary function symbol combine?
§ what does that mean?

Given a domain D and a function symbol f of arity n

§ f is interpreted by a function Ff from Dn to D
§ we write: Ff P Dn Ñ D

For example
§ a meaningful interpretation for add would be

§ ` (formally: xn, my ÞÑ n`m)
§ a meaningful interpretation for mult would be

§ ˆ (formally: xn, my ÞÑ nˆm)
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Interpretation of Predicate & Function Symbols

WARNING �: sometimes for convenience we will use the same
symbol for a function symbol and its interpretation
For example:

1. we have used 0 in our examples as a constant symbol, which
has no meaning on its own

2. this constant symbol would be interpreted by the natural
number 0, which is an object of the domain N

Even though we used the same symbols, these symbols stand for
different entities:

1. a constant symbol
2. an object of the domain

If we want to distinguish them, we might use:
1. 0 or zero for the constant symbol
2. 0 for the object of the domain
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Models

Models: a model provides the interpretation of all symbols
Given a signature xxfk1

1 , . . . , fkn
n y, xpj1

1 , . . . , pjm
m yy

§ of function symbols fi of arity ki, for 1 ď i ď n
§ of predicate symbols pi of arity ji, for 1 ď i ď m

a model is a structure xD, xFf1 , . . . , Ffny, xRp1 , . . . , Rpmyy

§ of a non-empty domain D
§ interpretations Ffi

for function symbols fi (P Dki Ñ D)
§ interpretations Rpi for predicate symbols pi (Ď Dji)

Models of predicate logic replace truth assignments for
propositional logic
For example:

§ we might interpret the signature xxaddy, xevenyy
§ where add is a binary function symbol
§ and even is a unary predicate symbol

§ by the model xN, xx`y, xtx0y, x2y, x4y, . . . uyyy
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Models

A model assigns meaning to function and predicate symbols
Variable valuations: In addition, we need to assign meaning to
variables:

§ this is done using a partial function v
§ that maps variables to D
§ i.e., a mapping of the form x1 ÞÑ d1, . . . , xn ÞÑ dn

§ which maps each xi to di, i.e., to vpxiq

§ dompvq “ tx1, . . . , xnu

§ let ¨ be the empty mapping
§ we write v, x ÞÑ d for the mapping that

§ maps x to d
§ and maps each y P dompvq such that x ­“ y to vpyq

For example
§ px1 ÞÑ d1q, x2 ÞÑ d2 maps x1 to ?d1 and x2 to ?d2
§ px1 ÞÑ d1, x2 ÞÑ d2q, x1 ÞÑ d3 maps x1 to ?d3 and x2 to ?d2
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Semantics of Predicate Logic

Given a model M with domain D and a variable valuation v, to
assign meaning to Predicate Logic formulas, we define two
operations:

§ JtKM
v , which gives meaning to the term t w.r.t. M and v

§ (M,v P , which gives meaning to the formula P w.r.t. M and v

Meaning of terms:
§ JxKM

v “ vpxq

§ Jfpt1, . . . , tnqKM
v “ Ff pxJt1KM

v , . . . , JtnKM
v yq
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Semantics of Predicate Logic

Given a model M with domain D and a variable valuation v, to
assign meaning to Predicate Logic formulas, we define two
operations:

§ JtKM
v , which gives meaning to the term t w.r.t. M and v

§ (M,v P , which gives meaning to the formula P w.r.t. M and v

Meaning of formulas:
§ (M,v ppt1, . . . , tnq iff xJt1KM

v , . . . , JtnKM
v y P Rp

§ (M,v ␣P iff ␣(M,v P

§ (M,v P ^Q iff (M,v P and (M,v Q

§ (M,v P _Q iff (M,v P or (M,v Q

§ (M,v P Ñ Q iff (M,v Q whenever (M,v P

§ (M,v @x.P iff for every d P D we have (M,pv,xÞÑdq P

§ (M,v Dx.P iff there exists a d P D such that (M,pv,xÞÑdq P
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Semantics of Predicate Logic

For example:
§ consider the signature xxzero, succ, addy, xeven, oddyy

§ the model M : xN, x0,`1,`y, xtx0y, x2y, x4y, . . . u, tx1y, x3y, x5y, . . . uyy

§ we write `1 for the function that given a number increments it by 1
§ `pn, mq stands for n`m

What is (M,¨ evenpsuccpzeroqq _ oddpsuccpzeroqq?
§ iff (M,¨ evenpsuccpzeroqq or (M,¨ oddpsuccpzeroqq

§ iff xJsuccpzeroqKM
¨ y P tx0y, x2y, x4y, . . . u or

xJsuccpzeroqKM
¨ y P tx1y, x3y, x5y, . . . u

§ iff x1y P tx0y, x2y, x4y, . . . u or x1y P tx1y, x3y, x5y, . . . u

§ iff True
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Semantics of Predicate Logic

For example:
§ consider the signature xxzero, succ, addy, xeven, oddyy

§ the model M : xN, x0,`1,`y, xtx0y, x2y, x4y, . . . u, tx1y, x3y, x5y, . . . uyy

§ we write `1 for the function that given a number increments it by 1
§ `pn, mq stands for n`m

What is (M,¨ @x.evenpxq?
§ iff for all n P N, (M,x ÞÑn evenpxq

§ iff for all n P N, xJxKM
x ÞÑny P tx0y, x2y, x4y, . . . u

§ iff for all n P N, xny P tx0y, x2y, x4y, . . . u

§ iff False, because 1 R t0, 2, 4, . . . u
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Semantics of Predicate Logic

For example:
§ consider the signature xxzero, succ, addy, xeven, oddyy
§ the model M : xN, x0,`1,`y, xtx0y, x2y, x4y, . . . u, tx1y, x3y, x5y, . . . uyy

§ we write `1 for the function that given a number increments it by 1
§ `pn, mq stands for n`m

What is (M,¨ @x.evenpxq Ñ ␣oddpxq?
§ iff for all n P N, (M,x ÞÑn evenpxq Ñ ␣oddpxq
§ iff for all n P N, (M,x ÞÑn ␣oddpxq whenever (M,x ÞÑn evenpxq
§ iff for all n P N, ␣ (M,x ÞÑn oddpxq whenever (M,x ÞÑn evenpxq
§ iff for all n P N, xJxKM

x ÞÑny R tx1y, x3y, x5y, . . . u whenever
xJxKM

x ÞÑny P tx0y, x2y, x4y, . . . u

§ iff for all n P N, xny R tx1y, x3y, x5y, . . . u whenever
xny P tx0y, x2y, x4y, . . . u

§ iff for all n P N, n R t1, 3, 5, . . . u whenever n P t0, 2, 4, . . . u

§ iff True
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Semantics of Predicate Logic

For example:
§ consider the signature xxzero, succ, addy, xlt, geyy
§ the model M :
xN, x0,`1,`y, xtx0, 1y, x0, 2y, x1, 2y, . . . u, tx0, 0y, x1, 1y, x1, 0y, . . . uyy

§ we write `1 for the function that given a number increments it by 1
§ `pn, mq stands for n`m

What is (M,¨ @x.@y.ltpx, yq Ñ gepy, xq?
§ iff for all n, m P N, (M,x ÞÑn,y ÞÑm ltpx, yq Ñ gepy, xq

§ iff for all n, m P N, (M,x ÞÑn,y ÞÑm gepy, xq whenever
(M,x ÞÑn,y ÞÑm ltpx, yq

§ iff for all n, m P N,
xJyKM

x ÞÑn,y ÞÑm, JxKM
x ÞÑn,y ÞÑmy P tx0, 0y, x1, 1y, x1, 0y, . . . u whenever

xJxKM
x ÞÑn,y ÞÑm, JyKM

x ÞÑn,y ÞÑmy P tx0, 1y, x0, 2y, x1, 2y, . . . u

§ iff for all n, m P N, xm, ny P tx0, 0y, x1, 1y, x1, 0y, . . . u whenever
xn, my P tx0, 1y, x0, 2y, x1, 2y, . . . u

§ iff True
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Satisfiability & Validity

We write (M P for (M,¨ P

Truth: P is true in the model M if (M P

We also say that M is a model of P

Satisfiability: P is satisfiable if there is a model M such that P is
true in M , i.e., (M P

Validity: P is valid if for all model M , P is true in M

Example: (M,¨ @x.evenpxq Ñ ␣oddpxq is satisfiable (see above)
but not valid because not true for example in the model
xN, x0,`1,`y, xtx0y, x2y, x4y, . . . u, tx0y, x2y, x4y, . . . uyy

Decidability: Validity is not decidable for predicate logic, i.e.,
there is no algorithm that given a formula P either returns “yes” if
P is valid, and otherwise returns “no”, while it is
decidable for propositional logic
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Recap: Soundness & Completeness

Given a deduction system such as Natural deduction, a formula is
said to be provable if there is a proof of it in that deduction system

§ This is a syntactic notion
§ it asserts the existence of a syntactic object: a proof
§ typically written $ A

A formula A is valid if for all model M , A is true in M , i.e., (M P

§ it is a semantic notion
§ it is checked w.r.t. valuations/models that give meaning to formulas
§ written |ù A

Soundness: a deduction system is sound w.r.t. a semantics if every
provable formula is valid

§ i.e., if $ A then |ù A

Completeness: a deduction system is complete w.r.t. a semantics if
every valid formula is provable

§ i.e., if |ù A then $ A 21/23



Soundness & Completeness

Natural Deduction for Predicate Logic is
§ sound and
§ complete

w.r.t. the model semantics of Predicate Logic

Proving those properties is done within the metatheory
We will not prove them here
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Conclusion

What did we cover today?
§ Semantics of Predicate Logic
§ Models
§ Variable valuations
§ Satisfiability & validity

Further reading:
§ Chapter 10 of

http://leanprover.github.io/logic_and_proof/

Next time?
§ Equivalences in Predicate Logic
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Vincent Rahli
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Where are we?

§ Symbolic logic
§ Propositional logic
§ Predicate logic
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Today

Equivalences:
§ in Natural Deduction
§ using semantics

Further reading:
§ Chapter 8 of

http://leanprover.github.io/logic_and_proof/
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Recap: Syntax

The syntax of predicate logic is defined by the following grammar:

t ::“ x | fpt, . . . , tq
P ::“ ppt, . . . , tq | ␣P | P ^ P | P _ P | P Ñ P | @x.P | Dx.P

where:
§ x ranges over variables
§ f ranges over function symbols
§ fpt1, . . . , tnq is a well-formed term only if f has arity n
§ p ranges over predicate symbols
§ ppt1, . . . , tnq is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of
predicate symbols, along with their arities, is called a signature.
The scope of a quantifier extends as far right as possible. E.g.,
P ^ @x.ppxq _ qpxq is read as P ^ @x.pppxq _ qpxqq
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Recap: Substitution

Substitution is defined recursively on terms and formulas:
Prxzts substitute all the free occurrences of x in P with t.

xrxzts = t
xryzts = x
pfpt1, . . . , tnqqrxzts = fpt1rxzts, . . . , tnrxztsq
pppt1, . . . , tnqqrxzts = ppt1rxzts, . . . , tnrxztsq
p␣Pqrxzts = ␣Prxzts
pP1 ^ P2qrxzts = P1rxzts ^ P2rxzts
pP1 _ P2qrxzts = P1rxzts _ P2rxzts
pP1 Ñ P2qrxzts = P1rxzts Ñ P2rxzts
p@x.Pqrxzts = @x.P
pDx.Pqrxzts = Dx.P
p@y.Pqrxzts = @y.Prxzts, if y R fvptq
pDy.Pqrxzts = Dy.Prxzts, if y R fvptq

The additional conditions ensure that free variables do not get
captured.
These conditions can always be met by silently renaming
bound variables before substituting.
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Recap: @ & D elimination and introduction rules

Natural Deduction rules for quantifiers:

Prxzys

@x.P
r@Is

@x.P
Prxzts

r@Es
Prxzts

Dx.P
rDIs

Dx.P

Prxzys
1

....
Q

Q
1 rDEs

Condition:
§ for r@Is: y must not be free in any not-yet-discharged hypothesis or in
@x.P

§ for r@Es: fvptq must not clash with bvpPq
§ for rDIs: fvptq must not clash with bvpPq
§ for rDEs: y must not be free in Q or in not-yet-discharged hypotheses or

in Dx.P
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Recap: Example of a proof

here is a proof of p@z.ppzqq Ñ @x.ppxq _ qpxq.

@z.ppzq
1

ppyq
r@Es

ppyq _ qpyq
r_ILs

@x.ppxq _ qpxq
r@Is

p@z.ppzqq Ñ @x.ppxq _ qpxq
1 rÑ Is

Conditions:
§ y does not occur free in not-yet-discharged hypotheses or in
@x.ppxq _ qpxq

§ y does not clash with bound variables in ppzq
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Recap: Models

Models: a model provides the interpretation of all symbols
Given a signature xxfk1

1 , . . . , fkn
n y, xpj1

1 , . . . , pjm
m yy

§ of function symbols fi of arity ki, for 1 ď i ď n
§ of predicate symbols pi of arity ji, for 1 ď i ď m

a model is a structure xD, xFf1 , . . . , Ffny, xRp1 , . . . , Rpmyy

§ of a non-empty domain D
§ interpretations Ffi

for function symbols fi

§ interpretations Rpi for function symbols pi

Models of predicate logic replace truth assignments for
propositional logic
Variable valuations:

§ a partial function v
§ that map variables to D
§ i.e., a mapping of the form x1 ÞÑ d1, . . . , xn ÞÑ dn
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Recap: Semantics of Predicate Logic

Given a model M with domain D and a variable valuation v:
§ JtKM

v gives meaning to the term t w.r.t. M and v
§ (M,v P gives meaning to the formula P w.r.t. M and v

Meaning of terms:
§ JxKM

v “ vpxq
§ Jfpt1, . . . , tnqKM

v “ Ff pxJt1KM
v , . . . , JtnKM

v yq

Meaning of formulas:
§ (M,v ppt1, . . . , tnq iff xJt1KM

v , . . . , JtnKM
v y P Rp

§ (M,v ␣P iff ␣(M,v P
§ (M,v P ^Q iff (M,v P and (M,v Q
§ (M,v P _Q iff (M,v P or (M,v Q
§ (M,v P Ñ Q iff (M,v Q whenever (M,v P
§ (M,v @x.P iff for every d P D we have (M,pv,xÞÑdq P
§ (M,v Dx.P iff there exists a d P D such that (M,pv,xÞÑdq P
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Recap: Logical equivalences for Propositional Logic

The same equivalences hold as in Propositional Logic:
§ De Morgan’s law (I): ␣pA_Bq Ø p␣A^␣Bq

§ De Morgan’s law (II): ␣pA^Bq Ø p␣A_␣Bq

§ Implication elimination: pA Ñ Bq Ø p␣A_Bq

§ Commutativity of ^: pA^Bq Ø pB ^Aq

§ Commutativity of _: pA_Bq Ø pB _Aq

§ Associativity of ^: ppA^Bq ^ Cq Ø pA^ pB ^ Cqq

§ Associativity of _: ppA_Bq _ Cq Ø pA_ pB _ Cqq

§ Distributivity of ^ over _: pA^ pB _ Cqq Ø ppA^Bq _ pA^ Cqq

§ Distributivity of _ over ^: pA_ pB ^ Cqq Ø ppA_Bq ^ pA_ Cqq

§ Double negation elimination: p␣␣Aq Ø A

§ Idempotence: pA^Aq Ø A and pA_Aq Ø A
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Logical Equivalences

In addition, the following hold (some hold only classically):
§ p@x.A^Bq Ø pp@x.Aq ^ p@x.Bqq

§ pDx.A_Bq Ø ppDx.Aq _ pDx.Bqq

§ p␣@x.Aq Ø pDx.␣Aq

§ p␣Dx.Aq Ø p@x.␣Aq

§ p@x.Aq Ø A if x R fvpAq
§ pDx.Aq Ø A if x R fvpAq
§ p@x.A_Bq Ø pp@x.Aq _Bq if x R fvpBq
§ pDx.A^Bq Ø ppDx.Aq ^Bq if x R fvpBq
§ p@x.A Ñ Bq Ø ppDx.Aq Ñ Bq if x R fvpBq
§ pDx.A Ñ Bq Ø pp@x.Aq Ñ Bq if x R fvpBq
§ p@x.A Ñ Bq Ø pA Ñ @x.Bq if x R fvpAq
§ pDx.A Ñ Bq Ø pA Ñ Dx.Bq if x R fvpAq
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Logical Equivalences

As before to prove a logical equivalence A Ø B, we will prove:
§ that we can derive B form A

§ that we can derive A form B

We will prove:
§ p@x.A^Bq Ø pp@x.Aq ^ p@x.Bqq

§ pDx.A_Bq Ø ppDx.Aq _ pDx.Bqq

§ p␣@x.Aq Ø pDx.␣Aq

§ p␣Dx.Aq Ø p@x.␣Aq
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Logical Equivalences

Prove the logical equivalence p@x.A^Bq Ø pp@x.Aq ^ p@x.Bqq in
Natural Deduction
Here is a proof of the left-to-right implication (constructive):

@x.A^B

Arxzys ^Brxzys
r@Es

Arxzys
r^ELs

@x.A
r@Is

@x.A^B

Arxzys ^Brxzys
r@Es

Brxzys
r^ERs

@x.B
r@Is

p@x.Aq ^ p@x.Bq
r^Is

§ pick y such that it does not occur in A or B
§ y must not be free in @x.A^B or in @x.A
§ y must not clash with bvpA^Bq
§ y must not be free in @x.A^B or in @x.B
§ y must not clash with bvpA^Bq
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Logical Equivalences

Prove the logical equivalence p@x.A^Bq Ø pp@x.Aq ^ p@x.Bqq in
Natural Deduction
Here is a proof of the right-to-left implication (constructive):

p@x.Aq ^ p@x.Bq

@x.A
r^ELs

Arxzys
r@Es

p@x.Aq ^ p@x.Bq

@x.B
r^ERs

Brxzys
r@Es

Arxzys ^Brxzys
r^Is

@x.A^B
r@Is

§ pick y such that it does not occur in A or B

§ y must not be free in p@x.Aq ^ p@x.Bq or in @x.A^B

§ y must not clash with bvpAq
§ y must not clash with bvpBq
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Logical Equivalences

Prove the logical equivalence pDx.A_Bq Ø ppDx.Aq _ pDx.Bqq in
Natural Deduction
Here is a proof of the left-to-right implication (constructive):

Dx.A _ B

Arxzys _ Brxzys
1

Arxzys
2

Dx.A
rDIs

pDx.Aq _ pDx.Bq
r_ILs

Arxzys Ñ pDx.Aq _ pDx.Bq
2 rÑ Is

Brxzys
3

Dx.B
rDIs

pDx.Aq _ pDx.Bq
r_IRs

Brxzys Ñ pDx.Aq _ pDx.Bq
3 rÑ Is

pDx.Aq _ pDx.Bq
r_Es

pDx.Aq _ pDx.Bq
1 rDEs

§ pick y such that it does not occur in A or B

§ 1: Arxzys _Brxzys

§ 2: Arxzys

§ 3: Brxzys
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Logical Equivalences

Prove the logical equivalence pDx.A_Bq Ø ppDx.Aq _ pDx.Bqq in
Natural Deduction
Here is a proof of the right-to-left implication (constructive):

pDx.Aq _ pDx.Bq

Dx.A
1

Arxzys
2

Arxzys _Brxzys
r_ILs

Dx.A_B
rDIs

Dx.A_B
2 rDEs

Dx.A Ñ Dx.A_B
1 rÑ Is

Dx.B
3

Brxzys
4

Arxzys _Brxzys
r_IRs

Dx.A_B
rDIs

Dx.A_B
4 rDEs

Dx.B Ñ Dx.A_B
3 rÑ Is

Dx.A_B
r_Es

§ 1: Dx.A
§ pick y such that it does not occur in A or B
§ 2: Arxzys
§ 3: Dx.B
§ 4: Brxzys
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Logical Equivalences

Prove the logical equivalence p␣@x.Aq Ø pDx.␣Aq in Natural
Deduction
Here is a proof of the left-to-right implication (classical):

␣@x.A

␣pDx.␣Aq
1
␣Arxzys

2

Dx.␣A
rDIs

K
r␣Es

␣␣Arxzys
2 r␣Is

Arxzys
rDNEs

@x.A
r@Is

K
r␣Es

␣␣pDx.␣Aq
1 r␣Is

Dx.␣A
rDNEs

§ 1: ␣pDx.␣Aq

§ pick y such that it does not occur in A

§ 2: ␣Arxzys 17/23



Logical Equivalences

Prove the logical equivalence p␣@x.Aq Ø pDx.␣Aq in Natural
Deduction

Here is a proof of the right-to-left implication (constructive):

Dx.␣A

␣Arxzys
2

@x.A
1

Arxzys
r@Es

K
r␣Es

K
2 rDEs

␣@x.A
1 r␣Is

§ 1: @x.A

§ pick y such that it does not occur in A

§ 2: ␣Arxzys
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Logical Equivalences

Prove the logical equivalence p␣Dx.Aq Ø p@x.␣Aq in Natural
Deduction

Here is a proof of the left-to-right implication (constructive):

␣Dx.A

Arxzys
1

Dx.A
rDIs

K
r␣Es

␣Arxzys
1 r␣Is

@x.␣A
r@Is

§ pick y such that it does not occur in A

§ 1: Arxzys
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Logical Equivalences

Prove the logical equivalence p␣Dx.Aq Ø p@x.␣Aq in Natural
Deduction

Here is a proof of the right-to-left implication (constructive):

Dx.A
1

@x.␣A

␣Arxzys
r@Es

Arxzys
2

K
r␣Es

K
2 rDEs

␣Dx.A
1 r␣Is

§ 1: Dx.A

§ pick y such that it does not occur in A

§ 2: Arxzys
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Logical Equivalences

As before: if (P Ø Q or Q Ø P ) and P occurs in A, then
replacing P by Q in A leads to a formula B, such that A Ø B

Also,

Semantical equivalence: two formulas P and Q are equivalent if
for all models M and valuations v, (M,v P iff (M,v Q
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Logical Equivalences

Example: prove p␣Dx.Aq Ø p@x.␣Aq
§ if (M,v ␣Dx.A then (M,v @x.␣A

§ to prove: (M,v @x.␣A, i.e., for every d P D it is not the case
that (M,v,xÞÑd A

§ assume d P D and (M,v,xÞÑd A, and prove a contradiction
§ assumption: (M,v ␣Dx.A, i.e., it is not the case that there

exists a e P D such that (M,v,xÞÑe A
§ contradiction! there is one: take e “ d

§ if (M,v @x.␣A then (M,v ␣Dx.A
§ to prove: (M,v ␣Dx.A, i.e., it is not the case that there exists

a e P D such that (M,v,xÞÑe A
§ assume that there exists a e P D such that (M,v,xÞÑe A, and

prove a contradiction
§ assumption: (M,v @x.␣A, i.e., for every d P D it is not the

case that (M,v,xÞÑd A
§ therefore, instantiating this assumption with e: it is not the

case that (M,v,xÞÑe A
§ contradiction!
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Conclusion

What did we cover today?
§ Equivalence using Natural Deduction
§ Equivalences using semantics

Further reading:
§ Chapter 8 of

http://leanprover.github.io/logic_and_proof/

Next time?
§ Predicate Logic – Equivalences
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