Exercise Sheet Revisions

1. Induction

Show that for all $n \in \mathbb{N}$, $5n^3 + n \equiv 0[6]$.

2. Two's complement on 8 bits

In a program, the variables x, y and z represent integers in 8-bit two's complement. These are the values that they currently store:

- x = 0000 1100
- y = 1001 0000
- z = 0111 0111
- (a) Recover the decimal values $x, y, z \in \mathbb{Z}$ that are represented by variables x, y and z.
- (b) Compute the addition of x and z as binary representations and compare it with the decimal value of x + y. Discuss briefly.

3. Floating points on 8 bits

Let us consider an 8-bit floating point encoding with 1 bit for sign s, 3 bits for exponent e, and 4 bits for mantissa m. It therefore represents the number $x = s \cdot m \cdot 2^e$.

- (a) What is the decimal representation of the number represented as
 - 0111 0000
 - 1001 0001
- (b) What is the binary representation of the following numbers as 8-bit floating points
 - $2.5 = 1.25 \times 2^1$
 - $-1.125 = -1.125 \times 2^0$
- (c) Discuss what happens when trying to encode the following numbers as 8-bit floating points
 - $1.03125 = (1 + \frac{1}{32}) \times 2^0$
 - $48 = 1.5 \times 2^5$

4. Sets and elementhood

Let $A = \{x \in \mathbb{R} \mid 0 \le x \le 100\}$, $B = \{n \in \mathbb{N} \mid n = p^3 \text{ for some } p \in \mathbb{N}\}$, and $C = \{a, b\}$. Give all the elements of the set $(A \cap B) \times C$.

5. Venn diagrams

(a) Draw the Venn diagram for $(A \setminus B) \cup (B \setminus A)$.

Let us abbreviate $(A \setminus B) \cup (B \setminus A)$ as $A \nabla B$.

(b) Draw the Venn diagram for $(A \nabla B) \nabla C$.

6. Equivalence relation

On the set of pairs of real numbers \mathbb{R}^2 let us define the relation R as: for all $(x, y), (x', y') \in \mathbb{R}^2$,

 $((x,y),(x',y')) \in R \iff$ there exists a,b > 0 such that x' = ax and y' = by

Show that R is an equivalence relation.

7. Order relation

On the set of pairs of real numbers \mathbb{R}^2 let us define the relation R as: for all $(x, y), (x', y') \in \mathbb{R}^2$,

 $((x,y),(x',y')) \in R \iff x \le x' \text{ and } y \le y'$

Show that R is an order relation.

8. Function and relation

Let $A = \{a, b, c, d\}, B = \{1, 2, 3, 4\}$ and $R = \{(a, 1), (b, 1), (c, 2), (c, 4), (d, 3)\}.$

- (a) Draw a diagram of the situation with an arrow from an element $x \in A$ on the lefthandside to a an element $y \in B$ on the righthandside when $(x, y) \in R$.
- (b) Is R a function from A to B?
- (c) Take $B' = \{1, 2, 3\}$. Is $R \cap (A \times B')$ a function? If so, is it injective?

9. Injective/surjective functions

Let $f = \mathbb{N}^2 \to \mathbb{N}$. Is f injective? surjective? bijective? $(n,m) \mapsto n \times m$

10. Countable/uncountable sets

For any given $n \in \mathbb{N}$, $n \ge 1$, let $A_n = \{k \in \mathbb{N} \mid 0 \le k \le n\}$ and $B_n = \{x \in \mathbb{R} \mid 0 \le x \le n\}$

- (a) Is A_n finite, countably infinite or uncountable? Justify your answer.
- (b) Is B_n finite, countably infinite or uncountable? Justify your answer.