
LC Mathematical and Logical Foundations of Computer Science

Solutions

Main Summer Examinations 2023

1

Non-alpha only

Note

Answer ALL questions. Each question will be marked out of 20. The paper will be marked

out of 80, which will be rescaled to a mark out of 100.

Question 1 [Numbers & Sets]

Usual notation for sets may be used, including the following.

A× B def
= {(x, y) | x ∈ A, y ∈ B}

A+ B
def
= {(0, x) | x ∈ A} ∪ {(1, y) | y ∈ B}

A∗
def
= the set of all lists of elements of A

[a .. b)
def
= {n ∈ Z | a ⩽ n < b}

[a .. b]
def
= {n ∈ Z | a ⩽ n ⩽ b}

(a) In my program, x and y are variables, each storing an 8+8-bit representation of a

positive real number. (This means 8 bits for the fractional part of the mantissa, and

8 bits for the exponent using a bias of 27.)

(i) Currently, x stores the bit-pattern 1001 1000 1000 0010. What number does

this represent? Explain your answer. [4 marks]

(ii) Although the number stored in y is greater than 0, is it possible that execut-

ing the instruction x = x + y can leave x unchanged? Explain your answer.

[4 marks]

(b) My online shop has two kinds of customer: regular and premium. A regular customer

has just an ID number and a name. A premium customer has an ID number, a name,

and the name of their customer service contact. (An ID number is any natural

number.) Give a set whose elements are all possible customer records. You can take

Char to be the set of all characters that can appear in a string. [4 marks]

(c) Let C be the set {4n + 3 | n ∈ N}. Let f : C → [0 .. 5) be the function sending x
to x mod 5.

(i) Is this function injective? Explain your answer. [4 marks]

(ii) What are the elements of C/ker(f)? Recall that ker(f) is the equivalence
relation on C that relates any two elements x, y ∈ C such that f (x) = f (y).

[4 marks]

Model answer / LOs / Creativity:

– 2 – Turn Over

This is last year's exam. Since the content is slightly different
we've suggested slightly different questions in red.
Some of the content will not be covered or will be covered later
(linear algebra and predicate logic), as indicated below.

Non-alpha only

(a) (i) It represents a × 2n, where

a = 1.100110002

= 1 +
1

2
+
1

16
+
1

32

= 1
19

32
n = 100000102 − 27
= 4

So it represents 119
32
× 24. This can be simplified to 251

2
(not required).

(ii) Yes, it’s possible. For example, suppose that y stores the bit-pattern 0000 0000 0000 0000,

which represents 2−128. Adding this to x gives 251
2
+ 2−128, which rounds to

251
2
.

(b) The set of strings is Char∗, so the set of records is

N× Char∗ + N× Char∗ × Char∗

(c) (i) f (3) = 3 and f (23) = 3, but 3 ̸= 23, so f isn’t injective.
(ii) The elements of A/ker(f) are as follows:

{20n + 3 | n ∈ N}, {20n + 7 | n ∈ N}, {20n + 11 | n ∈ N},
{20n + 15 | n ∈ N}, {20n + 19 | n ∈ N}

Learning outcomes:

� “Solve mathematical problems in algebra and set theory.”

� “Apply mathematical techniques to solve a problem within a computer science set-

ting”.

Creativity is in parts (b) and (c).

– 3 – Turn Over

Non-alpha only

Question 2 [Linear Algebra]

Throughout this question, the field is rational numbers (with usual addition and multipli-

cation).

(a) Consider the vector space of four-tuples of rational numbers. Show that the following

four vectors are not linearly independent:

−→a1 =




1

11

13

12




−→a2 =




2

6

10

6




−→a3 =




4

7

3

4




−→a4 =




3

1

7

0




[7 marks]

(b) Consider the vector space of three-tuples of rational numbers. Show that the fol-

lowing three vectors form an orthogonal basis:

−→x1 =



0

−5
0


 −→x2 =



0

0

1


 −→x3 =



2

0

0




[10 marks]

(c) Does the vector space from part (b) have a basis which has four vectors? If yes,

then give an example of such a basis. If no, explain why this is not possible.

[3 marks]

Model answer / LOs / Creativity:

(a) This can be solved by Gaussian Elimination, but a creative solution is to observe

that −→a1 +−→a4 = 2 ·−→a2 .
Marking scheme: 0 marks if not attempted. 7 marks if fully correct. Partial credit

(3-4) marks if they have the rough idea but make a mistake somewhere, maybe an

arithmetic mistake in Gaussian elimination.

(b) First we observe that the three vectors are linearly independent: suppose there exist

rational numbers a1, a2, a3 such that
P3
i=1 ai ·−→xi =



0

0

0


. Expanding the left-hand

size of the equation, we get that
P3
i=1 ai · −→xi =



2a3
−5a1
a2


, i.e., a1 = a2 = a3 = 0.

Hence, the three given vectors are linearly independent.

– 4 – Turn Over

Non-alpha only

Next, we show that any three-tuple, say −→y =



y1
y2
y3


 of rational numbers can be

expressed as a linear combination of −→x1 ,−→x2 and −→x3 . This follows since we have

y2
−5 ·
−→x1 + y3 ·−→x2 + y1

2
·−→x3 = y2

−5 ·



0

−5
0


+ y3 ·



0

0

1


+ y1

2
·



2

0

0


 =



y1
y2
y3


 = −→y .

Finally, for orthogonality we calculate each of the three pairwise inner products and

observe that they are the zero vector.

Marking scheme: 3 marks for showing linear independence. 4 marks for showing

every element of the vector space can be expressed using the given three vectors. 3

marks (1 for each of the three pairwise inner products) for showing basis is orthogonal

(c) No, this is not possible. We have constructed a basis with three vectors in part (b).

In the lectures, we have seen that every basis of a vector space has the same number

of vectors hence a basis with 4 vectors is not possible.

Marking scheme: 0 marks if not attempted. 3 marks even if just stated (without

proof) the fact covered in the lectures that every basis has the same number of

vectors and we have constructed a basis with three vectors in part (b)

Learning outcomes:

� “Solve mathematical problems in algebra and set theory.” (a, b, c);

� “Apply mathematical techniques to solve a problem within a computer science set-

ting” (a, b, c).

Creativity is not necessary, but can help simplify proof of (a) quite a bit. For (b), observing

right away that the given vectors are essentially the standard basis (mentioned in the

lectures) can also shorten the arguments.

Question 3 [Propositional Logic]

Let F be the formula (A ∨ ¬B)→ B → A, and
let G be the formula (A→ B)→ ¬B → ¬(A ∨ B).
(See the logic cheat sheet below for the Natural Deduction rules for Propositional Logic.)

(a) Provide parse trees corresponding to F and G. [4 marks]

(b) Provide a constructive Natural Deduction proof of F . [6 marks]

(c) Provide a constructive Natural Deduction proof of G. [6 marks]

(d) Is F satisfiable? Is G valid? Justify your answers. [4 marks]

– 5 – Turn Over

Non-alpha only

Model answer / LOs / Creativity:

(a) The parse trees of F and G are

→

→

AB

∨

¬

B

A

→

→

¬

∨

BA

¬

B

→

BA

Marking scheme: 2 marks for each tree; 1 mark if partially correct.

(b) Here is a proof of F :

A ∨ ¬B 1
A
3

A→ A 3 [→ I]

B
2 ¬B 4

⊥ [¬E]

A
[⊥ E]

¬B → A 4 [→ I]

A
[∨E]

B → A 2 [→ I]

(A ∨ ¬B)→ B → A 1 [→ I]

Marking scheme: 1 if attempted; 2 if introduced hypotheses; 3 if realized the ∨ has
to be eliminated; 4 if just a few mistakes; 5 if near perfect (a few missing labels); 6

if perfect.

(c) Here is a proof of G:

A ∨ B 3

A→ B 1
A
4

B
[→ E] ¬B 2

⊥ [¬E]

A→⊥ 4

B
5 ¬B 2

⊥ [¬E]

B →⊥ 5 [→ I]

⊥ [∨E]

¬(A ∨ B) 3 [¬I]

¬B → ¬(A ∨ B) 2 [→ I]

(A→ B)→ ¬B → ¬(A ∨ B) 1 [→ I]

Marking scheme: 1 if attempted; 2 if introduced hypotheses; 3 if realized the ∨ has
to be eliminated; 4 if just a few mistakes; 5 if near perfect (a few missing labels); 6

if perfect.

– 6 – Turn Over

Non-alpha only

(d) Both formulas are provable so by soundness are valid, and therefore satisfiable too.

This question can be answered by drawing a truth table or by providing one valuation

that make the formula true in the case of satisfiability.

Marking scheme: 2 marks for each question; 1 mark if not fully justified

Learning outcomes:

� “Understand and apply algorithms for key problems in logic such as satisfiability.”

(b, c, & d);

� “Write formal proofs for propositional and predicate logic” (b & c);

� “Apply logical techniques to solve a problem within a computer science setting” (a,

b, c, & d).

Creativity will be required to come up with proofs.

– 7 – Turn Over

Non-alpha only

Question 4 [Predicate Logic]

Consider the following signature:

� Function symbols: zero (arity 0); succ (arity 1)

� Predicate symbols: < (arity 2); ≤ (arity 2)

We will use infix notation for the binary symbols < and ≤. For simplicity we write 0 for
zero, 1 for succ(zero), 2 for succ(succ(zero)), etc. Consider the following formulas

that capture properties of the above symbols:

� let S1 be ¬∃x.0 ≤ x

� let S2 be ∀x.∀y .x < y → x ≤ succ(y)

(See the logic cheat sheet below for the Natural Deduction rules for Predicate Logic.)

(a) Provide a constructive Natural Deduction proof of:

(S1)→ ∀x.¬0 ≤ x

[6 marks]

(b) Provide a constructive Natural Deduction proof of:

(S1)→ (S2)→ ¬∃x.0 < x

[8 marks]

(c) Provide a model M1 such that ⊨M1 ∃x.∃y .x ≤ y ∧ ¬x < y and a model M2 such
that ⊨M2 ¬(∃x.∃y .x ≤ y ∧ ¬x < y), [6 marks]

Model answer / LOs / Creativity:

(a) Here is a proof of the formula:

S1
1

0 ≤ x 2
∃x.0 ≤ x [∃I]

⊥ [¬E]

¬0 ≤ x 2 [¬I]
∀x.¬0 ≤ x [∀I]

S1 → ∀x.¬0 ≤ x
1 [→ I]

Marking scheme: 1 if attempted; 2 if realized the ∀ must be introduced; 3 if found
the contradiction to prove; 4 if instantiated the existential correctly; 5 if near perfect

(e.g., missing labels); 6 if perfect.

– 8 – Turn Over

Non-alpha only

(b) Here is a proof of the formula:

∃x.0 < x 3
S1

1

S2
2

∀y .0 < y → 0 ≤ succ(y) [∀E]

0 < x → 0 ≤ succ(x) [∀E]
0 < x

4

0 ≤ succ(x) [→ E]

∃x.0 ≤ x [∃I]

⊥ [¬E]

⊥ 4 [∃E]

¬∃x.0 < x 3 [¬I]
S2 → ¬∃x.0 < x

2 [→ I]

S1 → S2 → ¬∃x.0 < x
1 [→ I]

Marking scheme: 1 if attempted; 2 if introduced hypotheses; 3 if realized the ∃ has
to be eliminated; 4 if the elimination of the ∃ was done correctly; 5 if found the
contradiction to prove; 6 if instantiated the existential correctly; 7 if near perfect (a

few missing labels); 8 if perfect.

(c) For example, the models

� M1 = ⟨N, ⟨0, ⟨n⟩ 7→ n + 1⟩, ⟨{⟨n,m⟩ | n < m}, {⟨n,m⟩ | n ≤ m}⟩⟩
� and M ′1 = ⟨{0}, ⟨0, ⟨n⟩ 7→ n⟩, ⟨∅, {⟨n,m⟩ | True}⟩⟩

are models of ∃x.∃y .x ≤ y ∧ ¬x < y ;
The models

� M2 = ⟨N, ⟨0, ⟨n⟩ 7→ n + 1⟩, ⟨{⟨n,m⟩ | n ≤ m}, {⟨n,m⟩ | n < m}⟩⟩
� and M ′2 = ⟨{0}, ⟨0, ⟨n⟩ 7→ n⟩, ⟨{⟨n,m⟩ | True}, ∅⟩⟩

are models of ¬∃x.∃y .x ≤ y ∧ ¬x < y .
Marking scheme: 3 marks for each question; 1 or 2 marks if the functions/sets are

not quite well-formed.

Learning outcomes:

� “Understand and apply algorithms for key problems in logic such as satisfiability.”

(a, b, & c);

� “Write formal proofs for propositional and predicate logic” (a & b);

� “Apply logical techniques to solve a problem within a computer science setting” (a,

b, & c).

Creativity will be required to come up with proofs and models.

End of Questions – See below for the Logic cheat sheet
– 9 – Turn Over

Non-alpha only

Logic cheat sheet

1 Propositional Logic

1.1 Syntax

The syntax of propositional logic formulas is defined by the following grammar, where a

ranges over atomic propositions (atoms):

P ::= a | P ∧ P | P ∨ P | P → P | ¬P

There are two special atoms: ⊤ which stands for True, and ⊥ which stands for False.
We use the following precedence and associativity rules:

� Precedence: in decreasing order of precedence ¬,∧,∨,→.

� Associativity: all operators are right associative

1.2 Constructive Natural Deduction

⊥
A

[⊥ E] ⊤ [⊤I]

A
1

....
B

A→ B 1 [→ I] A→ B A
B

[→ E]

A
1

....
⊥
¬A 1 [¬I] ¬A A

⊥ [¬E]

A
A ∨ B [∨IL] A

B ∨ A [∨IR] A ∨ B A→ C B → C
C

[∨E]

A B
A ∧ B [∧I] A ∧ B

B
[∧ER] A ∧ B

A
[∧EL]

1.3 Classical Natural Deduction

It includes all the Constructive Natural Deduction rules, plus:

A ∨ ¬A [LEM]
¬¬A
A

[DNE]

– 10 – Turn Over

Non-alpha only

1.4 Truth Tables

A B A ∨ B
T T T

T F T

F T T

F F F

A B A ∧ B
T T T

T F F

F T F

F F F

A B A→ B
T T T

T F F

F T T

F F T

A ¬A
T F

F T

⊤
T

⊥
F

2 Predicate Logic

2.1 Syntax

The syntax of predicate logic is defined by the following grammar:

t ::= x | f (t, . . . , t)
P ::= p(t, . . . , t) | ¬P | P ∧ P | P ∨ P | P → P | ∀x.P | ∃x.P

There are two special predicate symbols of arity 0: ⊤ which stands for True, and ⊥
which stands for False.

2.2 Natural Deduction

The Natural Deduction rules for Predicate Logic include all Proposition Logic rules plus

the following rules:

P[x\y]
∀x.P [∀I] ∀x.P

P[x\t] [∀E]
P[x\t]
∃x.P [∃I] ∃x.P

P[x\y] 1....
Q

Q
1 [∃E]

Side conditions:

� for [∀I]: y must not be free in any not-yet-discharged hypothesis or in ∀x.P

� for [∀E]: fv(t) must not clash with bv(P)

� for [∃I]: fv(t) must not clash with bv(P)

� for [∃E]: y must not be free in Q or in not-yet-discharged hypotheses or in ∃x.P

2.3 Semantics

Given a signature: ⟨⟨f k11 , . . . , f knn ⟩, ⟨pj11 , . . . , pjmm ⟩⟩

� of function symbols fi of arity ki , for 1 ≤ i ≤ n

� of predicate symbols pi of arity ji , for 1 ≤ i ≤ m
– 11 – Turn Over

2.3 Semantics 2 PREDICATE LOGIC

a model M is a structure ⟨D, ⟨Ff1, . . . ,Ffn⟩, ⟨Rp1, . . . ,Rpm⟩⟩

(a) of a non-empty domain D

(b) interpretations Ffi ∈ Dki → D for function symbols fi
(c) interpretations Rpi ⊆ Dji for function symbols pi
A variable valuation v is a partial function from variables to D

Given a model M and a variable valuation v , we assign meaning to terms and formulas as

follows:

� Meaning of terms:

– JxKMv = v(x)
– Jf (t1, . . . , tn)KMv = Ff (⟨Jt1KMv , . . . , JtnKMv ⟩)

� Meaning of formulas:

– ⊨M,v ⊤ is true

– ⊨M,v ⊥ is false

– ⊨M,v p(t1, . . . , tn) iff ⟨Jt1KMv , . . . , JtnKMv ⟩ ∈ Rp
– ⊨M,v ¬P iff ¬⊨M,v P
– ⊨M,v P ∧Q iff ⊨M,v P and ⊨M,v Q
– ⊨M,v P ∨Q iff ⊨M,v P or ⊨M,v Q
– ⊨M,v P → Q iff ⊨M,v Q whenever ⊨M,v P
– ⊨M,v ∀x.P iff for every d ∈ D we have ⊨M,(v,x 7→d) P
– ⊨M,v ∃x.P iff there exists a d ∈ D such that ⊨M,(v,x 7→d) P

12

