
Mathematical and Logical Foundations of Computer Science

Solutions

Second Class Test 2021/22

1



Mathematical and Logical Foundations of Computer Science

Question 1 [Relations, functions, induction & linear equations]

(a) Let V = {1, 2, 3, 4, 5, 6, 7} and let E = {(1, 7), (2, 1), (4, 1), (6, 5), (6, 6)} be a
binary relation on V . Find the equivalence closure of this relation and state the

equivalence classes. (It may help to draw a diagram.) [4 marks]

(b) The coefficients of the following system are taken from GF(2). Solve it using Gaus-

sian elimination.

x1 + x2 + x4 = 0

x1 + x3 + x4 = 1

x2 + x5 = 0

x1 + x2 + x3 + x5 = 0

x1 + x3 = 0

[5 marks]

(c) Let S be the smallest subset of {a, b}∗ such that all of the following conditions are
satisfied:

� ε ∈ S.
� If w ∈ S, then aabw ∈ S.
� If w ∈ S, then any anagram of w is also in S. (An anagram of w is a string
that arises from w by a permutation of the letters.)

(i) Show that aabababaa is in S. [2 marks]

(ii) Argue that ababab is not in S by giving a property and proving that all elements

of S satisfy this property. [5 marks]

(d) Consider the following Java methods. Do they represent functions? If yes, are they

injective, surjective, or bijective? Justify your answers.

int doubleInt(int number) { return number * 2; }
float addOneToFloat(float number) { return number + 1.0; }

[4 marks]

Model answer / LOs / Creativity:

2



(a) The equivalence closure results from taking the reflexive, symmetric, and transitive

closures (in this order). It is equal to the following set:

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (1, 2), (2, 1), (1, 4), (4, 1),
(1, 7), (7, 1), (2, 4), (4, 2), (2, 7), (7, 2), (4, 7), (7, 4), (5, 6), (6, 5)}

The equivalence classes are {1, 2, 4, 7}, {3}, and {5, 6}.

(b) Gaussian elimination in compressed form should look somewhat like the following.
1 1 0 1 0 0

1 0 1 1 0 1

0 1 0 0 1 0

1 1 1 0 1 0

1 0 1 0 0 0

→

1 1 0 1 0 0

0 1 1 0 0 1

0 1 0 0 1 0

0 0 1 1 1 0

0 1 1 1 0 0

 add row 1 to rows 2,4,5

→


1 1 0 1 0 0

0 1 1 0 0 1

0 0 1 0 1 1

0 0 1 1 1 0

0 0 0 1 0 1

 add row 2 to rows 3,5

→


1 1 0 1 0 0

0 1 1 0 0 1

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 1 0 1

 row 4 ← row 3 + row 4

→


1 1 0 1 0 0

0 1 1 0 0 1

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 0 0 0

 row 5 ← row 5 + row 4

→


1 1 0 1 0 0

0 1 0 0 1 0

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 0 0 0

 row 2 ← row 2 + row 3

→


1 0 0 1 1 0

0 1 0 0 1 0

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 0 0 0

 row 1 ← row 1 + row 2

3



→


1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 0 0 0

 row 1 ← row 1 + row 4

This shows x5 is free. As GF(2) only has two elements (0 and 1), the solutions are

x5 = 0, x4 = 1, x3 = 1, x2 = 0, x1 = 1

and

x5 = 1, x4 = 1, x3 = 0, x2 = 1, x1 = 0.

(c) (i) The string aabababaa can be produced as

ε⇒ aab⇒ aabaab⇒ ababaa⇒ aabababaa

with the ‘anagram’ rule used in the second-to-last step, or as

ε⇒ aab⇒ aabaab⇒ aabaabaab⇒ aabababaa

with the ‘anagram’ rule used in the final step. (There are also other possibilities,

which involve more steps in total.)

(ii) The property is that every string in S contains twice as many as as bs. Formally,

let #a(w) be the number of as in the string w and let #b(w) be the number

of bs, then the property is

#a(w) = 2#b(w) for all w ∈ S.

We can prove this by structural induction:

base case: For ε, we have #a(ε) = 0 = 2#b(ε).

inductive case 1: Suppose #a(w) = 2#b(w). Then

#a(aabw) = 2 +#a(w) = 2 + 2#b(w) = 2(1 +#b(w)) = 2#b(aabw).

inductive case 2: Suppose #a(w) = 2#b(w). A permutation of the letters

does not affect the total number of any type of letter, so if w ′ is an anagram

of w , then #a(w
′) = #a(w) = 2#b(w) = 2#b(w

′).

This completes the proof that all elements of S satisfy the property.

Finally, we have #a(ababab) = 3 and #b(ababab) = 3, therefore ababab does

not satisfy the property and is not in S.

(d) Both methods are functions: doubleInt is defined for every int and it is clearly

single-valued. Similarly, addOneToFloat is defined for every float and is also single-

valued.

4



doubleInt is not surjective because it only produces even integers. By the pigeon-

hole principle, it then cannot be injective either since the domain and co-domain have

the same finite cardinality. Alternatively, we expect, for example, doubleInt(2ˆ31)

to be 0.

addOneToFloat is not injective because if the absolute value of number is small

enough, then the output will be 1 by rounding even if the input was non-zero. Again,

the domain and co-domain have the same finite cardinality, so addOneToFloat can-

not be surjective either.

A function is bijective if it is both injective and surjective, so neither function is

bijective.

Learning outcomes: “Solve mathematical problems in algebra and set theory” (a, b,

c); “Apply mathematical techniques to solve a problem within a computer science setting”

(c, d).

Question 2 [SAT & Predicate Logic]

(a) Let p, q, r, s be atoms capturing the states of four cells, which can either be filled

or empty: p is true if the cell is filled, and false if the cell is empty, and similarly for

the other atoms. Consider the following formula:

(p ∨ ¬q) ∧ (p ∨ r) ∧ (p ∨ s) ∧ (q ∨ ¬p) ∧ (q ∨ r) ∧ (q ∨ s)
∧(¬r ∨ ¬p) ∧ (¬r ∨ ¬q) ∧ (¬r ∨ s) ∧ (¬s ∨ ¬p) ∧ (¬s ∨ ¬q) ∧ (¬s ∨ r)

(i) Using DPLL, find a valuation that shows that the above formula is satisfiable.

Justify your answer as we did in the SAT lecture. [6 marks]

(ii) Is the formula valid? Justify your answer. [2 marks]

(iii) Explain in one sentence what property about the states of the four cells p, q,

r , and s, this formula captures. [2 marks]

(b) Consider the following signature:

� Function symbols: zero (arity 0); succ (arity 1)

� Predicate symbols: < (arity 2)

We will use infix notation for the binary symbol <. Consider the following formulas

that capture properties of the above symbols:

� let S1 be ∀y .(∃x.x < y)→ 0 < y
� let S2 be ∀x.x < succ(x)

For simplicity we write 0 for zero, 1 for succ(zero), 2 for succ(succ(zero)), etc.

5



(i) Provide a constructive Natural Deduction proof of:

S1 → S2 → 0 < 2

(Hint: you can prove this formula without [∀I] and [∃E].) [6 marks]

(ii) Explain why the following tree is not a Natural Deduction proof. Justify your

answer.
S2

1

x < succ(x)
[∀E]

∀y .y < succ(x)
[∀I]

∃x.∀y .y < x
[∃I]

S2 → ∃x.∀y .y < x
1 [→ I]

(Hint: keep in mind that the ∀ and ∃ rules have side conditions.) [4 marks]

Model answer / LOs / Creativity:

(a) (i) Here is a run of the DPLL algorithm:

� (p ∨ ¬q) ∧ (p ∨ r) ∧ (p ∨ s) ∧ (q ∨ ¬p) ∧ (q ∨ r) ∧ (q ∨ s) ∧ (¬r ∨ ¬p) ∧
(¬r ∨ ¬q) ∧ (¬r ∨ s) ∧ (¬s ∨ ¬p) ∧ (¬s ∨ ¬q) ∧ (¬s ∨ r)

� select p = T

� we remove: (p ∨ ¬q) ∧ (p ∨ r) ∧ (p ∨ s) ∧ (q ∨ ¬p) ∧ (q ∨ r) ∧ (q ∨ s) ∧
(¬r ∨ ¬p) ∧ (¬r ∨ ¬q) ∧ (¬r ∨ s) ∧ (¬s ∨ ¬p) ∧ (¬s ∨ ¬q) ∧ (¬s ∨ r)

� we obtain: q ∧ (q ∨ r) ∧ (q ∨ s) ∧ ¬r ∧ (¬r ∨ ¬q) ∧ (¬r ∨ s) ∧ ¬s ∧ (¬s ∨
¬q) ∧ (¬s ∨ r)

� select q = T

� we remove: q ∧ (q ∨ r)∧ (q ∨ s)∧¬r ∧ (¬r ∨¬q)∧ (¬r ∨ s)∧¬s ∧ (¬s ∨
¬q) ∧ (¬s ∨ r)

� we obtain: ¬r ∧ ¬r ∧ (¬r ∨ s) ∧ ¬s ∧ ¬s ∧ (¬s ∨ r)
� select r = F

� we remove: ¬r ∧ ¬r ∧ (¬r ∨ s) ∧ ¬s ∧ ¬s ∧ (¬s ∨ r)
� we obtain: ¬s ∧ ¬s ∧ ¬s
� select s = F

� we remove: ¬s ∧ ¬s ∧ ¬s
� we obtain: no more clauses

� SAT

(ii) The formula is not valid. For example, set p = T, q = T, r = T, and s = T.

This makes the formula false because for example ¬r ∨ ¬p is false.
(iii) The property captures that either the two first cells p and q are filled while the

last two r and s are empty, or vise versa, that the two first cells p and q are

empty while the last two r and s are filled.

6



(b) (i) Here is a proof of S1 → S2 → 0 < 2:

∀y .(∃x.x < y)→ 0 < y
1

(∃x.x < 2)→ 0 < 2
[∀E]

∀x.x < succ(x)
2

1 < 2
[∀E]

∃x.x < 2
[∃I]

0 < 2
[→ E]

S2 → 0 < 2
2 [→ I]

S1 → S2 → 0 < 2
1 [→ I]

(ii) This is not a Natural Deduction because we cannot use [∀I] to derive ∀y .y <
succ(x) from x < succ(x) because x is free in ∀y .y < succ(x).

Learning outcomes: “Understand and apply algorithms for key problems in logic such

as satisfiability.” (a); “Write formal proofs for propositional and predicate logic” (a & b);

“Apply logical techniques to solve a problem within a computer science setting” (a & b).

7


