Mathematical and Logical Foundations of Computer Science Solutions

Main Summer Examinations 2022

Mathematical and Logical Foundations of Computer Science

Question 1

(a) Numbers and sets

- (i) Compute 4² and 4³ modulo 3. From these results, conjecture a property P(n) of 4ⁿ modulo 3. Prove by induction that P(n) is satisfied for all $n \in \mathbb{N}$. [3 marks]
- (ii) Let $sqrt : \{x \in \mathbb{N} \mid x \ge 0\} \rightarrow \{y \in \mathbb{R} \mid y \ge 0\}$ be the square root function from non-negative integers to non-negative reals, i.e. sqrt(x) = y if and only if $x = y^2$.

Is *sqrt* injective? surjective? bijective? Justify your answers. [3 marks]

(iii) Let float javaSqrt(int x) be a Java implementation of this square root function (assume it throws an exception if x is negative). Discuss the differences between sqrt and javaSqrt when considered as mathematical functions between sets.

(b) Linear algebra

Consider the three points

$$P_1 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \qquad P_2 = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} \qquad P_3 = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$$

- (i) Show that these form the corners of an equilateral triangle (i.e. a triangle where all sides have the same length). [2 marks]
- (ii) The triangle defines a plane M in \mathbb{R}^3 . Give its parametric representation and its normal form. [4 marks]
- (iii) Another plane *N* is given by

$$\begin{pmatrix} 1\\0\\3 \end{pmatrix} + q \begin{pmatrix} 1\\1\\1 \end{pmatrix} + r \begin{pmatrix} 2\\0\\1 \end{pmatrix}$$

Find the line of intersection of M and N.

[4 marks]

Show your working for each part.

Model answer / LOs / Creativity:

(a) (i) $4^2 = 16 = 3 \cdot 5 + 1 \equiv 1 \mod 3$ and $4^3 = 64 = 3 \cdot 21 + 1 \equiv 1 \mod 3$. We conjecture that $4^n \equiv 1 \mod 3$ for all $n \in \mathbb{N}$. We will prove it by induction on n.

Base case: $4^0 = 1 \equiv 1 \mod 3$.

Inductive step: Suppose for a given $n \in \mathbb{N}$ that $4^n \equiv 1 \mod 3$. Then, $4^{n+1} = 4 \cdot 4^n \equiv 4 \cdot 1 \mod 3 \equiv 4 \mod 3$. Hence, $4^{n+1} \equiv 1 \mod 3$.

Thus, we have by induction on *n* that, for all $n \in \mathbb{N}$, $4^n \equiv 1 \mod 3$.

(ii) **Injective?** Take $x, x' \in \mathbb{N}$, $x, x' \ge 0$ and $y, y' \in \mathbb{R}$, $y, y' \ge 0$ such that y = sqrt(x) and y' = sqrt(x'), meaning that $x = y^2$ and $x' = y'^2$. Suppose that y = y', this implies that $y^2 = y'^2$, and hence x = x'. Therefore, yes, sqrt is injective.

Surjective? Take $y \in \mathbb{R}, y \ge 0$. Is there necessarily an $x \in \mathbb{N}, x \ge 0$ such that y = sqrt(x), i.e., $y^2 = x$? No, take for example $y = \frac{1}{2}$, then $y^2 = \frac{1}{4} \notin \mathbb{N}$. Therefore, no, sqrt is not surjective.

Bijective? No, *sqrt* is not bijective since it is not surjective.

(iii) The two functions have different domains and co-domains: javaSqrt is defined only for numbers less than or equal to Integer.MAX_VALUE and its output is a floating point number. The set of all floating point numbers is a finite subset of \mathbb{Q} . Thus, while the range of *sqrt* includes irrational numbers such as $\sqrt{2}$, the range of javaSqrt is limited to rationals.

Because of rounding, the property $(javaSqrt(x))^2 = x$ does not generally hold exactly (though it is true approximately).

(b) (i) distance $P_1P_2 = \sqrt{(-1-1)^2 + (0-2)^2 + (4-4)^2} = 2\sqrt{2}$ distance $P_1P_3 = \sqrt{(-1-1)^2 + (2-2)^2 + (2-4)^2} = 2\sqrt{2}$ distance $P_2P_3 = \sqrt{(-1+1)^2 + (2-0)^2 + (2-4)^2} = 2\sqrt{2}$ Hence, $P_1P_2 = P_1P_3 = P_2P_3$ meaning that the triangle $P_1P_2P_3$ is equilateral.

(ii)
$$\overrightarrow{P_1P_2} = \begin{pmatrix} -1-1\\ 0-2\\ 4-4 \end{pmatrix} = \begin{pmatrix} -2\\ -2\\ 0 \end{pmatrix}$$
 and $\overrightarrow{P_1P_3} = \begin{pmatrix} -1-1\\ 2-2\\ 2-4 \end{pmatrix} = \begin{pmatrix} -2\\ 0\\ -2 \end{pmatrix}$.

A parametric representation of M is given as $P_1 + s \cdot P_1 P'_2 + t \cdot P_1 P'_3$. Therefore,

$$M = \begin{pmatrix} 1\\2\\4 \end{pmatrix} + s \cdot \begin{pmatrix} -2\\-2\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -2\\0\\-2 \end{pmatrix}$$

An equational representation of M is given by ax + by + cz = d with the values of a, b, c computed from $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_1P_3}$, and d from a, b, c and P_1 :

$$a = (-2) \cdot (-2) - 0 \cdot (-2) = 4$$

$$b = 0 \cdot (-2) - (-2) \cdot (-2) = -4$$

$$c = (-2) \cdot 0 - (-2) \cdot (-2) = -4$$

$$d = 4 \cdot 1 + (-4) \cdot 2 + (-4) \cdot 4 = -20$$

3

That is, *M* is described as x - y - z = -5.

(iii) The intersection between M and N is given by the system:

$$\begin{cases} 1 + q + 2r = 1 - 2s - 2t \\ q = 2 - 2s \\ 3 + q + r = 4 - 2t \end{cases}$$

Which we can rewrite as:

$$\begin{cases} q + 2r + 2s + 2t = 0\\ q + 2s = 2\\ q + r + 2t = 1 \end{cases}$$

To which we apply the Gaussian elimination algorithm:

$$\begin{pmatrix} 1 & 2 & 2 & 2 & | & 0 \\ 1 & 0 & 2 & 0 & | & 2 \\ 1 & 1 & 0 & 2 & | & 1 \end{pmatrix} \xrightarrow{(3)-(1), (2)-(1)} \begin{pmatrix} 1 & 2 & 2 & 2 & | & 0 \\ 0 & -2 & 0 & -2 & | & 2 \\ 0 & -1 & -2 & 0 & | & 1 \end{pmatrix}$$
$$\xrightarrow{2(3)-(2)} \begin{pmatrix} 1 & 2 & 2 & 2 & | & 0 \\ 0 & -2 & 0 & -2 & | & 2 \\ 0 & 0 & -4 & 2 & | & 0 \end{pmatrix}$$

The final equation is equivalent to t = 2s, which can be plugged into the parametric representation of M. The parametric representation of the intersection line between M and N is therefore given by:

$$L = \begin{pmatrix} 1\\2\\4 \end{pmatrix} + s \cdot \begin{pmatrix} -2\\-2\\0 \end{pmatrix} + (2s) \cdot \begin{pmatrix} -2\\0\\-2 \end{pmatrix} = \begin{pmatrix} 1\\2\\4 \end{pmatrix} + s \cdot \begin{pmatrix} -6\\-2\\-4 \end{pmatrix}$$

or, simplified:

$$L = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

The same result can alternatively be found by plugging the parametric representation of N into the normal form equation of M.

Learning outcomes:

- "Solve mathematical problems in algebra and set theory" (a&b);
- "Apply mathematical techniques to solve a problem within a computer science setting" (a(iii)).

Creativity will be required in a(i) and a(iii).

Question 2

(a) **Propositional Logic**

Let F be the formula $(A \lor B) \to (B \lor A)$, and let G be the formula $A \to (B \to (\neg B \lor \neg A)) \to \neg B$.

- (i) Provide a constructive Sequent Calculus proof of *F*. [4 marks]
- (ii) Provide a constructive Natural Deduction proof of G. [6 marks]
- (iii) Is G satisfiable? Justify your answer.

(b) **Predicate Logic**

Consider the following signature:

- Function symbols: zero (arity 0); succ (arity 1)
- Predicate symbols: < (arity 2); \leq (arity 2)

We will use infix notation for the binary symbols < and <. Consider the following formula that captures a property of the above symbols:

• let S_1 be $\forall x. \neg (x < 0)$

For simplicity we write 0 for zero, 1 for succ(zero), 2 for succ(succ(zero)), etc.

(i) Provide a constructive Natural Deduction proof of:

$$S_1 \rightarrow \neg \exists x. \forall y. x < y$$

[4 marks]

[2 marks]

(ii) Provide a model M_1 such that $\models_{M_1} \neg (\forall x. \forall y. x < y \rightarrow x \leq y)$, and a model M_2 such that $\vDash_{M_2} \forall x. \forall y. x \leq y \rightarrow x < y$ [4 marks]

Model answer / LOs / Creativity:

(i) Here is a constructive Sequent Calculus proof of F: (a)

$$\frac{\overline{A \vdash A}}{A \vdash B \lor A}^{[Id]} \xrightarrow{\overline{B \vdash B}} \overline{B \vdash B \lor A}^{[VR_{2}]} \xrightarrow{\overline{B \vdash B} \lor A}_{[\lor L]} \xrightarrow{[\lor L]} \overline{A \lor B \vdash B \lor A}^{[\lor L]}$$

$$\frac{A \lor B \vdash B \lor A}{\vdash (A \lor B) \to (B \lor A)} \xrightarrow{[\to R]}$$

1

(ii) Here is a constructive Natural Deduction proof of G:

$$\frac{\overline{B} \rightarrow (\neg B \lor \neg A)}{\neg B \lor \neg A} \stackrel{2}{\longrightarrow} \overline{B} \stackrel{3}{\xrightarrow{[] \rightarrow E]}} \frac{\overline{B} \stackrel{3}{\xrightarrow{[] \rightarrow E]}}{\neg B} \stackrel{4}{\xrightarrow{[] \rightarrow E]}} \frac{\overline{A} \stackrel{1}{\xrightarrow{[] \rightarrow A}} \stackrel{5}{\xrightarrow{[] \rightarrow E]}}{\xrightarrow{[] \rightarrow E]}} \stackrel{1}{\xrightarrow{[] \rightarrow E]}}{\xrightarrow{[] \rightarrow E]}} \frac{\overline{A} \stackrel{1}{\xrightarrow{[] \rightarrow E]}}{\neg A \rightarrow \bot} \stackrel{5}{\xrightarrow{[] \rightarrow E]}}{\xrightarrow{[] \rightarrow E]}} \stackrel{1}{\xrightarrow{[] \rightarrow E]}}{\xrightarrow{[] \rightarrow E]}} \frac{\frac{1}{\neg B} \stackrel{3}{\xrightarrow{[] \rightarrow I]}}{\xrightarrow{[] \rightarrow I}} \stackrel{1}{\xrightarrow{[] \rightarrow I]}}{\xrightarrow{[] \rightarrow I}} \stackrel{1}{\xrightarrow{[] \rightarrow I]}}{\xrightarrow{[] \rightarrow I}} \stackrel{1}{\xrightarrow{[] \rightarrow I]}}$$

- (iii) One possible answer is: G is valid by soundness, and therefore satisfiable too. Another possible answer would be to provide any valuation (as all valuations satisfy the formulas) and show using a truth table just for that valuation, that it indeed satisfies the formula.
- (b) (i) Here is a proof of $S_1 \rightarrow \neg \exists x. \forall y. x < y$:

$$\frac{\overline{\forall y.z < y}}{\frac{\exists x.\forall y.x < y}{2}} \stackrel{2}{\xrightarrow{[\forall E]}} \frac{\overline{\forall x.\neg(x < 0)}}{\neg(z < 0)} \stackrel{1}{[\forall E]}}{\frac{\exists x.\forall y.x < y}{\frac{1}{\Im \exists x.\forall y.x < y}} \stackrel{2}{\xrightarrow{[\neg F]}} 3 \ [\exists E]}$$

(ii) For example, the models $M_1 = \langle \mathbb{N}, \langle 0, \langle n \rangle \mapsto n+1 \rangle, \langle \{ \langle n, m \rangle \mid n \leq m \}, \{ \langle n, m \rangle \mid n < m \} \rangle$ and $M'_1 = \langle \{0\}, \langle 0, \langle n \rangle \mapsto n \rangle, \langle \{ \langle n, m \rangle \mid \text{True} \}, \emptyset \rangle \rangle$ are models of $\neg (\forall x. \forall y. x < y \rightarrow x \leq y)$; and the models $M_2 = \langle \mathbb{N}, \langle 0, \langle n \rangle \mapsto n+1 \rangle, \langle \{ \langle n, m \rangle \mid n \leq m \}, \{ \langle n, m \rangle \mid n < m \} \rangle \rangle$ and $M'_2 = \langle \{0\}, \langle 0, \langle n \rangle \mapsto n \rangle, \langle \{ \langle n, m \rangle \mid \text{True} \}, \emptyset \rangle \rangle$ are models of $\forall x. \forall y. x \leq y \rightarrow x < y$.

Learning outcomes:

- "Understand and apply algorithms for key problems in logic such as satisfiability."
 (a);
- "Write formal proofs for propositional and predicate logic" (a & b);
- "Apply logical techniques to solve a problem within a computer science setting" (a & b).

Creativity will be required in a & b to come up with proofs and models.