
LC Data Structures and Algorithms

Solutions

Main Summer Examinations 2023

1

Non-alpha only

Note

Answer ALL questions. Each question will be marked out of 20. The paper will be marked

out of 60, which will be rescaled to a mark out of 100.

Question 1

Stacks are often used to implement \undo" operations in applications like text editors

or Web browsers such that making a change in the text or clicking on a link in the

browser pushes a record of that operation on to the stack, while invoking undo pops

the record o� the stack and executes the actions necessary to undo the operation.

In theory, an unbounded stack can provide unlimited undo operations, but, to save

memory, many applications support only limited undo history. Thus invoking \push",

when the stack is already at full capacity, accepts the pushed elements at the top

of the stack and leaks the oldest element from the bottom of the stack rather than

throwing an exception, while invoking pop when the stack is empty still throws a

StackEmptyException.

(a) Describe, as clearly and simply as possible, your proposed strategy to implement

such a stack using a �xed-capacity array, so that each update operation runs in

O(1) time. [6 marks]

(b) Write the pseudocode for the push operation of such a stack. [7 marks]

(c) Write the pseudocode for the pop operation of such a stack [7 marks]

{ 2 { Turn Over

Non-alpha only

Model answer

(a) The idea here is to use a circular array [This was covered in the module as a possible

implemention of a queue but was never mentioned in the context of stacks].

The stack is maintained in an array of some capacity MAXSTACK. A size variable is

maintained to keep track of the total number of elements in the stack at any time.

A top variable is maintained to keep track of the index in the array where the next

value to be pushed on to the stack will be saved to.

As values are pushed onto the stack the top index is incremented modulo MAXSTACK

but the size variable is incremented only if the stack is not full.

When attempting to pop a value o� the stack, an error is reported if the stack

is empty. Otherwise the top index is decremented modulo MAXSTACK and the size

variable is decremented.

(b)1 // I n i t i a l i z e an empty l e a k y s t a c k

2 s t a c k = new i n t [MAXSTACK] ;

3 top = 0 ;

4 s i z e = 0 ;

5

6 vo id push (i n t v a l)

7 f

8 s t a c k [top] = v a l ;

9 top = (top + 1) mod MAXSTACK

10 i f (s i z e < MAXSTACK)

11 s i z e ++;

12 g

(c)1 i n t pop ()

2 f

3 i f (s i z e == 0)

4 f

5 throw StackEmptyExcept i on ;

6 g

7 s i z e ��;

8 top = (top + MAXSTACK � 1) mod MAXSTACK;

9 r e tu rn s t a c k [top] ;

10 g

{ 3 { Turn Over

Non-alpha only

Question 2

An ine�cient recursive function isbst was presented in the module.

Write an e�cient, recursive isbst function in pseudocode to check that a binary

tree is a valid Binary Search Tree based on checking that subtrees are within closed

intervals starting with [MIN INT, MAX INT] and calculate the complexity, in terms of

O(g(n)), with respect to the size of the tree. Justify your calculation of the com-

plexity with a short explanation. [20 marks]

{ 4 { Turn Over

Non-alpha only

Model answer

[For full correctness, getting the comparison operators as � rather than

< and excluding the value at the root of the sub-tree at each level, is

important to allow the full range of integers in the tree. Note that the

de�nition of BSTs in the module excludes duplicate values.]

1 i s b s t (t r e e t)

2 f

3 r e tu rn i s b s t (t , MIN INT , MAX INT)

4 g

5

6 i s b s t (t r e e t , i n t min , i n t max)

7 f

8 i f (i sEmpty (t))

9 r e tu rn t rue

10 e l s e

11 r e tu rn (min <= va l u e (t) and

12 v a l u e (t) <= max and

13 i s b s t (l e f t (t) , min , v a l u e (t)�1) and

14 i s b s t (r i g h t (t) , v a l u e (t) + 1 , max))

15 g

This function checks the value at every node exactly once and recursively walks

the entire tree, visiting each node once, so the complexity is O(n)

{ 5 { Turn Over

Non-alpha only

Question 3

Construct an AVL tree of positive integers and of height 3 such that insertion of the

value 7 will trigger a double rotation (i.e. a right rotation followed by a left rotation

or a left rotation followed by a right rotation) and, following the insertion of 7, an

insertion of the value 8 will also trigger a double rotation.

(a) Draw the valid AVL tree before the speci�ed insertions. [6 marks]

(b) Draw the valid AVL tree after insertion of 7 but before insertion of 8. [7 marks]

(c) Draw the valid AVL tree after insertion of 7 and of 8 in that order [7 marks]

{ 6 { Turn Over

Non-alpha only

Model answer

[This is one example of many possible].

30

20

5

10

25

40

50

Answer (a)

A. Before insertion of

7 and 8

30

20

5

10

7

25

40

50

B. After inserting 7,

before double rotation

30

20

7

5 10

25

40

50

Answer (b)

C. After double rot at 5

before inserting 8

30

20

7

5 10

8

25

40

50

D. After inserting 8

Before double

rotation

30

10

7

5 8

20

25

40

50

Answer (c)

E. After double

rotation at 20

{ 7 {

