
LC Data Structures and Algorithms

Solutions

Main January Examination 2023

1

Non-alpha only

Question 1

(a) If a Binary Tree is either empty or is a node with a left child and a right child that

are both Binary Trees, what additional conditions must a Binary Tree satisfy for it

to be

(i) Complete, and

(ii) a Binary Heap Tree?

[4 marks]

(b) The items [6, 9, 4, 8, 12, 5] need to be inserted one at a time into a Binary Heap

Tree, starting from an empty tree. Show the state of the tree after each item has

been inserted. [6 marks]

(c) One approach for sorting an array of items, a, is to �rst insert them into a Binary

Search Tree, t, and then output them back into the array in order. Write, in

pseudocode, a recursive procedure for �lling the array from the Binary Search Tree,

and specify what the initial call of the procedure is. You may call any of the standard

primitive operators for binary trees [10 marks]

{ 2 { Turn Over

Non-alpha only

Model answer:

(a) A Binary Tree is Complete if it has each layer �lled from left to right before moving

on to the next layer.

A Binary Tree is a Binary Heap Tree if it is Complete and each non-leaf node value

is greater than or equal to all the node values in its two sub-trees.

(b)

6

9

6

9

6 4

9

8

6

4

12

9

6 8

4

12

9

6 8

5

4

(c)1 f i l l A r r a y (t r e e t , a r r a y a , i n t j)

2 f

3 i f (not i sEmpty (t))

4 f

5 j = f i l l A r r a y (l e f t (t) , a , j)

6 a [j ++] = roo t (t)

7 j = f i l l A r r a y (r i g h t (t) , a , j)

8 g

9 r e tu rn j

10 g

The initial call is �llArray(t,a,0).

{ 3 { Turn Over

Non-alpha only

Question 2

(a) Describe how one can establish the best possible average-case time complexity of

any comparison-based sorting algorithm. Does Binary Search Tree-based sorting

achieve that? [6 marks]

(b) Show how Two-Phase Radix Sort can be used to sort the following set of dates given

in day/month format: [17/7, 12/7, 8/4, 8/7, 9/3, 12/4, 17/3, 12/6]. [6 marks]

(c) Explain how Radix Sort could be used to sort a set of integers without duplicates.

Describe the time complexity of your approach and determine if it is more e�cient

than the best possible comparison-based sorting algorithms. [8 marks]

{ 4 { Turn Over

Non-alpha only

Model answer:

(a) Given n items to sort, one can represent the comparisons as a binary decision tree

with leaves representing the n! potential orderings of the n items. The average

case time complexity of the most e�cient sorting algorithm will then correspond

to height h of the smallest binary tree that can accommodate the n! leaves. That

means 2h � n! or h � log n! � O(n log n), so the best average case time complexity

will be O(n log n), which is achieved by Binary Search Tree-based sorting.

(b) The �rst phase produces a queue of items for each value of the least signi�cant key

(the day), and those queues are concatenated in day order.

8: 8/4, 8/7

9: 9/3

12: 12/7, 12/4, 12/6

17; 17/7, 17/3

=> 8/4, 8/7, 9/3, 12/7, 12/4, 12/6, 17/7, 17/3

Then those items are put into queues for each value of the most signi�cant key (the

month), preserving their existing order.

3: 9/3, 17/3

4: 8/4, 12/4

6: 12/6

7: 8/7, 12/7, 17/7

When those queues are concatenated in month order, the array is sorted as required:

9/3, 17/3, 8/4, 12/4, 12/6, 8/7, 12/7, 17/7

(c) A set of integers can be sorted by forming queues and concatenating for each digit

in order of increasing signi�cance. If there are n integers to sort, each phase has

O(n) complexity, since all n items have to be processed, and there will be as many

phases as there are digits in the integers, which will be O(log n) if there are no/few

duplicates. Thus the overall complexity is O(n log n) which is no better than the

best comparison-based sorts.

{ 5 { Turn Over

Non-alpha only

Question 3

(a) Consider a graph represented by a symmetric N �N weight matrix. What does the

size and symmetry of that matrix indicate?

In the weight matrix, the symbol 1 is used to represent the lack of an edge con-

necting the vertices indicated by the row and column where the symbol appears, and

the connectivity level of a graph is de�ned as the actual number of edges divided

by the maximum possible number of edges.

Given a symmetric N � N weight matrix representing a graph, provide a formula

for the connectivity level of the graph as a function of N and the number M of 1

symbols it contains? [6 marks]

(b) Describe an e�cient greedy edge-based algorithm for determining a minimal spanning

tree of a weighted graph. In what sense is your algorithm greedy? [6 marks]

(c) What aspect of the algorithm you describe in part (b) above contributes most to its

time complexity, and what is this algorithm's overall time complexity? Comment on

the speed of this algorithm on highly connected graphs compared to Jarn��k-Prim's

vertex-based algorithm for the same problem. [8 marks]

{ 6 { Turn Over

Non-alpha only

Model answer:

(a) The size indicates the number of nodes/vertices in the graph and the symmetry

indicates the graph is undirected. The maximum possible number of edges is E =
N(N�1)

2
. The number M of 1 symbols is twice the number of missing edges. Thus

the connectivity level is:

E �M=2

E
=
N(N � 1)�M

N(N � 1)
= 1�

M

N(N � 1)

(b) Kruskal's algorithm: At each stage, for the current set of edges T , consider all edges

not yet in T and add the one with minimal weight that does not produce a cycle.

Starting with an empty set of edges, and repeating till all vertices are included, leads

to a minimal spanning tree. It is greedy in the sense that it makes decisions based

on what is best at each stage, rather than what might be best overall.

(c) The time complexity of the edge based algorithm is dominated by that of sorting

the edges, so it is O(e log e) overall, where e is the number of edges in the graph.

Highly connected graphs have e � v 2, where v is the number of vertices in the

graph, and hence the time complexity is then O(v 2 log v). The time complexity of

Jarn��k-Prim's algorithm for highly connected graphs is only O(v 2), so that will be

faster for highly connected graphs.

{ 7 {

