
Data Structures and Algorithms

Alan Sexton1

1Thanks to many staff from the School of Computer Science, Uni of

Birmingham, UK

Programs = Algorithms + Data Structures

Data Structures efficiently organise data in computer memory.

Algorithms manipulate data structures to achieve a given goal.

In order for a program to terminate fast (or in time), it has to use

appropriate data structures and efficient algorithms.

In this module we focus on:

• various data structures

• basic algorithms

• understanding the strengths and weaknesses of those, in terms

of their time and space complexities

1

Learning Outcomes

After completing this module, you should be able to:

• Design and implement data structures and algorithms

• Argue that algorithms are correct, and derive time and space

complexity measures for them

• Explain and apply data structures in solving programming

problems

• Make informed choices between alternative data structures,

algorithms and implementations, justifying choices on grounds

such as computational efficiency

2

Abstract Data Types (ADT)

A type is

• a set of possible values

• with a set of allowed operations on those values

An abstract data type (ADT) is a type whose internal

representation is hidden to the user.

Thus users of an abstract data type may have no information

about how the ADT is implemented, but depends only on the

published information about how it behaves.

This means that the implementation of an abstract type can be

changed without having to change the code that uses it.

Example
“Integer” is an abstract data type consisting of integer values with

operations + , - , * , mod , div , . . . 3

• A type is a collection of values, e.g. integers, Boolean values (true

and false) with their operations.

• The operations on an ADT might come with mathematically

specified constraints, for example on the time complexity of the

operations.

• Advantages of ADT’s as explained by Aho, Hopcroft and Ullman

(1983):

“At first, it may seem tedious writing procedures to govern all ac-

cesses to the underlying structures. However, if we discipline our-

selves to writing programs in terms of the operations for manipu-

lating abstract data types rather than making use of particular im-

plementations details, then we can modify programs more readily by

reimplementing the operations rather than searching all programs for

places where we have made accesses to the underlying data struc-

tures. This flexibility can be particularly important in large software

efforts, and the reader should not judge the concept by the necessarily

tiny examples found in this book.”

List is an ADT

An example of a list of numbers

〈2, 5, 1, 8, 23, 1〉 (ordered collection of elements)

List is an ADT; list operations may include:

• insert an entry (on a certain position)

• delete an entry

• access data by position

• search

• concatenate two lists

• sort

• ...

4

Different Representations of Lists

Depending on what operations are needed for our application, we

choose from different data structures (some implement certain

operations faster than the others):

• Arrays

• Linked lists

• Dynamic arrays

• Unrolled linked lists

• . . .

We will study some of these in detail later in the module.

5

Computer Memory to a Program

Data is stored, managed and manipulated in computer memory.

• The computer architecture (the hardware) and the operating system

work together to allow each running program to see an illusion that

they have all the memory on the computer to themselves.

• This memory is organised as a long list of memory cells, each 1 byte

or 8 bits large. A bit can hold either a zero or a one.

• Every one of these 1 byte cells has an address, a number in the

range 0 to the highest possible address for this system combination

• On older, 32 bit systems, this highest address is hexadecimal

FFFFFFFF (i.e. 8 ‘F’s), or 4,294,967,295 (i.e. 232 − 1)

• On newer, 64 bit systems, this is FFFFFFFFFFFFFFFF (i.e. 16

‘F’s), or approximately 1.844674407× 1019 (i.e. 264 − 1)

• For technical reasons, the hardware actually manipulates memory a

whole word at a time, where is word is either 4 bytes (32 bits) or 8

bytes (64 bits)
6

Memory Management

Of course, computers can not hold such gigantic amounts of memory,

and if a program tried to access every one of those bytes of memory, it

would reach addresses in memory where the illusion breaks down, and an

error would be triggered.

To support the illusion of all this memory for a program, programs have

to explicitly request the operating system to add large sections of

memory to their memory space via operating system calls

However, programs themselves need to manage their own memory with

much finer and more efficient control than these expensive operating

system calls

So the Runtime System, a software library that is integral to each

programming language, typically provides one of two options

1. Explicit Memory Management, with allocate and free or

2. Implicit Memory Management with Garbage Collection 7

Explicit Memory Management

The programming languages C and C++ are examples of programming

languages with explicit memory management.

C’s runtime system maintains it’s own data structure to organise the

memory it has obtained from the operating system. This data structure

is usually accessed by two functions:

1. malloc: allows the program to request a contiguous amount of

memory. If available, this is recorded in the memory managment

data structure, the address of the start of the block is returned to

the program and the data structure is updated accordingly.

If not available, a system call requests more memory from the

operating system. If successful, it integrates the memory into its

data structure and continues as before. If unsuccessful, it reports an

error back to the program.

2. free: Given the address of a block that was previously allocated,

marks it as available for future allocation 8

Explicit Memory Management

Explicit Memory Management is a simple model and very efficient.

However, it suffers from a number of disadvantages:

• The program needs to keep track of every block requested

with malloc so that it can be freed later. Otherwise, the

program will have memory leaks — these are blocks of

allocated memory that can no longer be used or freed. This

causes the program to use more memory than it needs (which

causes performance problems), and may cause the program to

crash if it eventually runs out of memory.

• If an error is made in giving an address to free that had not

previously been returned by malloc, or if that address had

already been freed, then the memory management data

structure can be corrupted, causing unpredictable errors or

crashes 9

Implicit Memory Management

Implicit Memory Management is much more sophisticated. The

programming language itself, through its runtime system, provides

mechanisms to allocate data structures (without exposing memory

addresses to programmers), and identifies allocated structures that

can no longer be accessed by the running program and adds them

back into its data structure of available free memory without

requiring the program to specifically ask for the memory to be

freed.

This mechanism is used by Java, Python, Functional programming

languages like Haskell and OCaml, and many more.

It relieves the heavy burden of keeping track of allocated memory

from the programmer, and avoids most of the bugs and problems

that address manipulation in languages like C are famous for.
10

Pseudocode

In this module we will be discussing details of algorithms. This

necessitates using a programming language to capture the precise

steps of the processing involved. However, standard programming

languages require a lot of administrative detail that is necessary to

get the program working on the computer but ends up obscuring

the important aspects of the algorithm we wish to explain.

Instead we will use a simplified, less rigorous style of a

programming language that will not run on any computer but

makes clear to a human reader the steps involved. This is called

pseudocode.

Throughout this module, when you are asked to write some

pseudocode, you are free to use pseudocode, Java code or any mix

between the two. In such cases any syntactic errors will not be

penalised so long as the intent is clear to a human reader.
11

Pseudocode

The core elements of a programming language like Java are

• Variables: named memory cells that can hold values of some

type, e.g. Integers, Strings, Arrays, etc.

• Expressions: how to calculate new values

• Assignment statements: how to modify variables

• Sequences and Blocks: how to execute a sequence of steps

and group them

• Conditionals: How to choose between different steps

• Loops: how to run steps multiple times

• Input/Output: How to write out or read in values

• Function definitions: How to combine steps into a function

that can be executed from multiple locations in the code

• Function calls: How to invoke a function

12

Pseudocode: Variables, Expressions

• For variables we use simple names with no spaces that start
with a letter and can contain letters, digits and the underscore
character “ ”. Examples include

• “total”, “name”, “length”, “account holder 2”

• Expressions can be any meaningful (to humans)
mathematical, logical or text expression using:
• Arithmetic operations: (+, −, ×,÷, ∗, / etc.)

• (sum1 + sum2) / 2

• Logical operations: (AND, OR, NOT, etc)

• isRaining AND haveUmbrella

• balance > 100 AND dayOfMonth == 1

• Strings can be joined together using “+” as a string

concatenation operator

• ”hello ” + name

• Extra operators from Java can be used.

13

Pseudocode: Assignments

• Assignments put values (possibly calculated by expressions,
into variables using a single “=” symbol

• n = (25 + n) MOD 50

• isRaining = TRUE

• message = ”Hello ” + name

• When you first use a variable, you can specify its type if it is
not clear from the context:

• float sum = 0

• You should not use different types in the same variable at

different times

• You should never use a variable in an expression whose value

has not first been set

14

Pseudocode: Sequences and Blocks of Statements

• To specify a sequence of statements, you can put them one
per line, indented to the same level. Optionally, you can put a
semicolon, “;”, at the end of each line:

• a = a+10

b = a*2-4

• To group them into a block, e.g. to be able to loop over
them, you can surround them with braces, “{“, “}”, or with
BEGIN, END:

• BEGIN

a = a+10

b = a*2-4

END

• Always indent the contents of the block correctly

15

Pseudocode: Conditional Statements

• Here we use one of the forms (always separated onto different
lines and indented:
• IF condition THEN statement ENDIF

• IF balance < 0 THEN

print(”Your balance is overdrawn”)

print(”You owe £”, -balance)

ENDIF

• IF condition THEN statement1 ELSE statement2 ENDIF

• IF condition1 THEN statement1 ELIF condition2 THEN

statement2 ... ELSE statementN ENDIF

• Alternatively you can use a more Java-like syntax:
• if (balance < 0)

{
print(”your balance is overdrawn”)

print(”You owe £”, -balance)

}
16

Pseudocode: Loops

• There are a number of forms for loops
• WHILE condition DO statement ENDWHILE

• DO statement WHILE condition

• REPEAT statement UNTIL condition

• FOR (initial statement; condition ; step) statement ENDFOR

• sum = 0

FOR (i = 0 ; i < 100 ; i=i+1)

sum = sum + i

ENDFOR

• These all have Java-like versions:
• sum = 0

for (i = 0 ; i < 100 ; i=i+1)

{
sum = sum + i

}

17

Pseudocode: Input/Output

• To output, use the function “print”, with as many arguments
as you need

• print(”answer is: ”, sum)

• To input, use the function “read”, assigning the return value
to a variable. There is no need to specify precisely the details
of the input format. The intention should be clear from the
surrounding code and the name of the variable.

• numberOfStudents = read()

18

Pseudocode: Functions

• Function definitions specify a sequence of statements to be

executed. Values can be passed in to the function by parameters,

results can be returned from the function using a RETURN

statement. You should specify the type of value that the function

returns, or specify the type as VOID if it does not return anything

(e.g. if it just prints values out).

• int max(int a, int b)

BEGIN

IF a > b

RETURN a

RETURN b

END

• int max(int a, int b)

{
if (a > b)

return a

return b

}

• Such a function can be called as follows:

• maximum = max(myValue, 10) 19

Arrays

Arrays

An array is a data structure that is laid out in memory as a

contiguous list of cells, with each cell indexed by the position of

the cell in the structure.

Just like in Java, We will always index arrays with the first cell

having index 0, and the last cell having index len - 1, where len

is the number of cells in the array (i.e. the length of the array).

Some programming languages (e.g. Fortran, R, Matlab) use a

different policy of using 1 and len for the first and last cell

respectively instead.

Cells do not need to be single bytes: the array is declared to

contain some underlying type, such as Integers, Floating Point

Numbers, Strings, etc. It is even possible to have an array of arrays

of integers, where each cell contains a whole array of integers
20

Array Operations

The basic array data type has very few operations.

• Array creation

1 i n t [] nums = new i n t [4]

• Getting values from cells in the array

1 v a l = nums [0]

• Assigning values to cells in the array

1 nums [1] = 23

• Getting the length of the array

1 l e n = l e n g t h (nums)

More sophisticated List ADTs often use basic arrays in their

implementation, but add more complex operations such as

increasing the size of a List, Sorting a list, concatenating Lists etc.
21

List as an array of a fixed length

In pseudocode, you can create an array

using Java-like syntax:

1 i n t [] nums = new i n t [4]

2 f o r (i =0, i<l e n g t h (nums) ; i=i +1)

3 nums [i] = i ∗ 10

This can be described in a diagram such

as the one below, and results in the

memory layout shown to the right

0 10 20 30

nums

i Memory
...

...

3344 23

3340 30271

3336 30

3332 20

3328 10

3324 0

3320 6738
...

...

nums:3100 3324

array

nums

Here we assume that the word size is 32 bits or 4 bytes, and

integers (and memory pointers) are also 32 bits.

22

• nums is a variable whose cell in memory is at address 3100. The

contents of this cell is a memory address, 3324, which is where the

array starts

• Every int in the array occupies one word or 4 bytes in memory

• Because we declared our array to be an array of integers, the

compiler knows that every entry in the array takes 4 bytes, and if

the array starts at location 3324, then it knows that:

– nums[0] is at address 3324,

– nums[1] is at address 3324 + (1× 4),

– nums[2] is at address 3324 + (2× 4), etc.

More complicated arrays in memory

In its simplist form, a Java class collects

variables together into a single structure

1 c l a s s P o i n t {
2 f l o a t x ;

3 f l o a t y ;

4 }
5 P o i n t [] l o c a t i o n s = new P o i n t [3] ;

6 l o c a t i o n s [1] . x = 2 5 . 2 ;

7 l o c a t i o n s [1] . y = 3 8 . 6 ;

i Memory
...

...

4052 0.0

4048 0.0

4044 38.6

4040 25.2

4036 0.0

4032 0.0
...

...

locations:3100 4032

Given that a float is 4 bytes, the following is what happens in memory:

1 C e l l a t a d d r e s s l o c a t i o n s +1∗2∗4+0 i s s e t to 2 5 . 2 ;

2 C e l l a t a d d r e s s l o c a t i o n s +1∗2∗4+1 i s s e t to 3 8 . 6 ;

In the 1*2*4: the 1 is the index into locations, the 2 is the number

of words in a Point object, and the 4 is the size of the word.
23

Memory Management Reviewed

In Java

• Memory allocation is automatic

• Freeing memory is automatic (by the garbage collector)

• Bounds of arrays are checked

In C or C++

• Allocations are explicit

• Freeing memory is explicit

• Bounds are not checked

Java is slower and safe, C and C++ is fast and dangerous.

24

A very common mistake is to try to access the last cell in an array incor-

rectly:

int[] a = new int[5];

a[5] = 1000; // Error: the cells are a[0] to a[4]

This leads to an ArrayIndexOutOfBoundsException in Java whereas

in C (or C++) this goes through without a warning and can lead to a

corruption of data in memory!

Inserting into an Array by Shifting Up

To insert a point at position pos , where 0 ≤ pos ≤ size:

1 m a x s i z e = 100

2 P o i n t [] l o c a t i o n s = new P o i n t [m a x s i z e] ;

3 i n t s i z e = 0 ; // number o f p o i n t s c u r r e n t l y s t o r e d

4

5 vo id i n s e r t (i n t pos , P o i n t pt) {
6 i f (s i z e == m a x s i z e) {
7 throw new A r r a y F u l l E x c e p t i o n (” l o c a t i o n s a r r a y ”) ;

8 }
9 f o r (i n t i=s i z e −1; i >= pos ; i−−) {

10 // Copy e n t r y i n pos i one pos towards t he end

11 l o c a t i o n s [i +1] = l o c a t i o n s [i] ;

12 }
13 l o c a t i o n s [pos] = pt ;

14 s i z e ++;

15 }
25

If we want to insert a value to an array (at a certain position) we can do

this in two steps:

1. Create a new array, of size bigger by one.

2. Copy elements of the old array to the new one to the corresponding

positions.

However, this requires to copy the whole array every single time. Instead,

we can allocate a big array at the beginning (of size maxsize) and then

always “only” shift elements whenever we are inserting/deleting one.

Exercise: write the corresponding pseudocode to remove an item from an

array by shifting down

Linked Lists

Linked Lists in Memory

Linked lists hold values of a particular type. They are constructed from

structures (Class objects in Java), called nodes that have a value

variable to hold the value and one or more node variables to identify the

next node in the list.

The linked list is then a collection of Node structures each connected to

others in a chain.

1 c l a s s Node {
2 i n t v a l ;

3 Node n e x t ;

4 }
5 Node l i s t = END;

Note that no Node has yet been allocated and therefore the list is empty.

END is a special value that represents an impossible memory address.

Any attempt to access Node.val or Node.next when list has the

value END , would immediately cause an error. 26

Linked Lists in Memory

Linked list representing a list 〈93, 23, 12, 53〉:
list

93 23 12 53

Inserting at the beginning of a list:

1 vo id i n s e r t b e g (Node l i s t , i n t number) {
2 newNode = new Node () ;

3 newNode . v a l = number

4 newNode . n e x t = l i s t ;

5 l i s t = newNode ;

6 }

Check that it works, even if list == END .

What is the complexity of insert beg , i.e. how

many operations does it take to run the function

once?

Does it depend on the size of the list?

i Memory

6140 5312

6136 23
...

...

5316 1248

5312 12
...

...

3828 6136

3824 93
...

...

list:2072 3824
...

...

1252 END

1248 53
...

...

27

Similarly to what we had before, each is realised as a block of two

consecutive locations in memory. The first location of such a block stores a

number and the second location stores the address of the following block.

The list variable contains the address pointing to the first node, called

the head pointer.

END indicates the end of the list (graphically as). Its value can be

anything that is not a valid address, for example, -1 . Most languages

use 0 for this purpose, which, although theoretically is a valid address, is

never so in practice. Java uses a special value called null .

A linked list is empty whenever list is equal to END .

An advantage of linked lists over arrays is that the length of linked lists is

not fixed. We can insert and delete items as we want. On the other hand,

accessing an entry on a specific position requires traversing the list.

Deleting at the beginning

1 Boolean i s e m p t y (Node l i s t) {
2 r e t u r n (l i s t == END) ;

3 }

1 vo id d e l e t e b e g i n (Node l i s t) {
2 i f i s e m p t y (l i s t) {
3 throw new E m p t y L i s t E x c e p t i o n (” d e l e t e b e g i n ”) ;

4 }
5 l i s t = l i s t . n e x t ;

6 }

28

Lookup

1 i n t v a l u e a t (Node l i s t , i n t i n d e x) {
2 i n t i = 0 ;

3 Node nextnode = l i s t ;

4 whi le (t rue) {
5 i f (nextnode == END) {
6 throw new OutOfBoundsExcept ion () ;

7 }
8 i f (i == i n d e x) {
9 break ;

10 }
11 nextnode = nextnode . n e x t ;

12 i ++;

13 }
14 r e t u r n nextnode . v a l ;

15 }

29

What is the time complexity of these operations?

(How does this compare to arrays?)

How would you implement insert end and delete end ?

Insert at the end

1 v o i d i n s e r t e n d (Node l i s t , i n t number) {
2 newblock = new Node () ;

3 newblock . v a l = number ;

4 newblock . nex t = END;

5 i f (l i s t == END) {
6 l i s t == newblock ;

7 }
8 e l s e

9 {
10 c u r s o r = l i s t ;

11 w h i l e (c u r s o r . nex t != END){
12 c u r s o r = cu r s o r . nex t ;

13 }
14 c u r s o r . nex t = newblock ;

15 }
16 }

30

Search is a procedure which finds the position (counting from 0) where a

value, given as a parameter, is stored in the array or linked list.

By “cost as a function of the number of elements” we mean: how does

the number of items we have to inspect or modify grow as the number

of elements in the structure grows? Constant means that the number of

operations does not depend on the number of elements. Linear means that

if we increase the number of elements in the structure by a factor of n,

then the cost of the operation in the worst case will be multiplied by n

too.

We compare costs by comparing the number of elements of the list we

have to inspect (in the worst case) in order to finish the operation.

In practise, we choose between using an array or linked list depending on

both relative frequency of use of the operations and their relative costs.

Comparison

If we store a list of n elements as an array (without spare space)

or a linked list, what costs will the basic operations of lists have as

a function of the number of elements in the list (when the list is

seen as an ADT)?

Array Linked List

access data by position

search for an element

insert an entry at the beginning

insert an entry at the end

insert an entry (on a certain position)

delete first entry

delete entry i

concatenate two lists

31

Comparison (solution)

If we store a list of n elements as an array (without spare space)

or a linked list, what costs will the basic operations of lists have as

a function of the number of elements in the list (when the list is

seen as an ADT)? Array Linked List

access data by position constant linear

search for an element linear linear

insert an entry at the beginning linear constant

insert an entry at the end linear linear*

insert an entry (on a certain position) linear linear

delete first entry linear constant

delete entry i linear linear

concatenate two lists linear linear*

The stars indicate that it could be improved to constant time if we

modified the representation slightly. As we’ll see very soon. . . 32

Modifications

Linked list with a pointer to the last node:
first last

93 23 12 53

Fast insert end

Slow delete end

Doubly linked list:

93 23 12 53

Try yourself: Write insert beg , insert end , delete beg

and delete end for those two representations.
33

If we remember where the first and the last block of a doubly linked list

is stored, then inserting at the end and deleting from the end could be

implemented in constant time.

• For a singly linked list node we use:

– a.val for the value contained node a

– a.next for the (pointer to the) next node in the list

• For a doubly linked list node we use:

– a.prev for the (pointer to the) previous node in the list

– a.val for the value contained node a

– a.next for the (pointer to the) next node in the list

More Modifications

Circular Singly

Linked List:

93 23 12 53

Circular Doubly

Linked List:

93 23 12 53

Try yourself: Write insert beg , insert end , delete beg

and delete end for those two representations. 34

Time for a quiz!

Let nums be the address of an array of integers of length len .

· · ·
nums

Which of the following algorithms creates a Singly Linked List

faster?

1 l i s t = END

2 f o r (i n t i =0; i < l e n ; i ++) {
3 i n s e r t e n d (l i s t , nums [i]) ;

4 }

1 l i s t = END;

2 f o r (i n t i=l e n −1; i >= 0 ; i−−) {
3 i n s e r t b e g (l i s t , nums [i]) ;

4 } 35

If we do not keep track of the last node then the second algorithm is faster.

This is because every insert beg takes constant time to execute whereas

when running insert end we need, every time we insert, to traverse the

list to the end before actually adding the new element, and each time the

list grows by one element so in total we have to traverse first a list of

0 element, then a list of 1 elements,..., until finally we traverse a list of

len − 1 elements. That is, in total we do 0 + 1 + 2 + 3 + . . . (len − 1),

traversal steps, that is:

0 + 1 + 2 + 3 + · · ·+ (len − 1) =
len (len − 1)

2

Abstract Data Types

Abstract Data Types in Java

List is an ADT. A specific instance of a list, e.g. a List of integers,

would be specified in Java by List<int> , a List of Strings as

List<String> etc.

There are different implementations of the List ADT in the Java

library, for example an Array based List (ArrayList<int> ,

ArrayList<String> , . . .) and a Linked List

(LinkedList<int> , LinkedList<String> , . . .)

In Java we can declare and allocate a List, specifying which

implemention we want, with the code:

1 L i s t<i n t> myAr rayL i s t = new Ar r a yL i s t<i n t >() ;

2 L i s t<i n t> myL inkedL i s t = new L i n k edL i s t<i n t >() ;

From this point on, you can use any of the predefined List methods

on the myArrayList or myLinkedList variables 2

Abstract Data Types Revisited

Recall that An abstract data type is

• a type

• with associated operations

• whose representation is hidden to the user

While a List of integers contains the type integer, the type of List

of integers is not integer. It is a more complex “container type”.

This is usually specified contructively: that is, we identify every

possible value of type List of integers by specifying how to create

each one. We do this by providing a list of constructor operations

that create an empty List of integers and construct new values of

type List of integers out of old ones

We also need to specify all other operations that any user of our

ADT can depend on 3

List Abstract Data Type

Here is a possible list of operations for a List ADT (many

variations are possible)1

• Constructors:
• EmptyList : returns an empty List

• MakeList(element, list) , adds an element at the front of

a list.

• Accessors
• first(list) : returns the first element of the list2

• rest(list) : returns the list excluding the first element2

• isEmpty(list) : reports whether the list is empty

From these, all other operations (e.g. find the nth element of the

list, append one list onto another) can be implemented without

requiring any other access to the List implementation details.
1Read chapters 1 and 2 of the module handouts
2Triggers error if the list is empty

4

List Operations: last element

in Pseudocode:

1 l a s t (l s t) {
2 i f (i sEmpty (l s t))

3 e r r o r (” E r r o r : empty l i s t i n l a s t ”)

4 e l s e i f (i sEmpty (r e s t (l s t))

5 re tu rn f i r s t (l s t)

6 e l s e

7 re tu rn l a s t (r e s t (l s t))

5

List Operations: getElementByIndex

in Pseudocode:

1 getE lementBy Index (index , l s t) {
2 i f (i nd ex < 0 or isEmpty (l s t))

3 e r r o r (” E r r o r : i nd e x out o f range ”)

4 e l s e i f (i nd e x == 0)

5 re tu rn f i r s t (l s t)

6 e l s e

7 re tu rn getE lementBy Index (index −1, r e s t (l s t))

6

List Operations: append

in Pseudocode:

1 append (l s t 1 , l s t 2) {
2 i f (i sEmpty (l s t 1))

3 re tu rn l s t 2

4 e l s e

5 re tu rn MakeList (f i r s t (l s t 1) ,

6 append (r e s t (l s t 1) , l s t 2))

7

Stacks

Stacks = LIFOs (Last-In-First-Out)

Stack is an abstract data type defined by its three operations:

• push(x) puts value x on the top of the stack

• pop() takes out a value from the top of the stack

If there are no values in the stack, it raises

EmptyStackException .

• is empty() says whether the stack is empty

(picture source: wikipedia)
8

Stack is an abstract data type. A stack is a list of values. The two ends of

the list are called the bottom and top. We push a value (add it to the top

of the stack) and pop a value (remove from the top of the stack). Thus

a stack behaves in a Last In First Out (LIFO) manner. If we try to pop

from an empty stack, we get an EmptyStackException . In theory we

should be able to push any number of values, but in practice that won’t

be possible and we will get an exception if we run out of memory.

We can have a stack of any type of value, e.g. a stack of integers, a stack

of strings, a stack of Booleans etc.

As a part of the specification of stacks it is usually also said that

push(x) followed by is empty() gives false , and push(x) fol-

lowed by pop() gives x back.

Since we see a stack as an abstract data type, we do not specify how it is

implemented.

Example
Suppose we create an empty stack and we push 3, push 5, push 2

and pop; we get 2. Suppose we then pop; we get 5. Suppose we

push 1, push 8, then pop. Pop again three times, what do we get?

Usage
For example, when we are solving tasks with dependencies.

Imagine that we want to complete a task A, push(A) , and

1. A depends on B and C =⇒ push(B) and push(C)

(ok, we need to solve C first but ...)

2. C depends on D =⇒ push(D) .

Once we complete D (pop()), C (pop()), and B (pop()), we

can also complete A (pop()).

9

(More verbose example of usage:)

One reason that stacks are useful is that sometimes, in order to complete

job A we must first do job B and then job C, but in order to complete job

B we must first do job D, and in order to do that we must first do job E

and job F. Using a stack, we can push the primary job onto the stack first

and each time we push any job onto the stack, we follow it by pushing the

jobs that it depends on. So long as you then execute the jobs in the order

that pop retrieves them, all the jobs will only be executed when the jobs

they depend upon are complete.

Another example: the most natural way of evaluating an expression writ-

ten in reverse Polish notation is by using stacks. This is because sub-

expressions have to be evaluated before the higher level expressions that

must use them, hence evaluating a sub-expression is a job that must be

completed before we can evaluate the higher level expressions

Stacks are heavily used in applications that involve exhaustive searches of

some problem space and in constructing and searching tree structures.

Stack ADT

Here is a possible list of operations for a Stack ADT (many

variations are possible)3

Constructors and Accessors:

• EmptyStack : returns an empty Stack

• push(element, stack) , pushes an element on top of the

given stack.

• top(stack) : returns the value at the top of the stack

without changing the stack4

• pop(stack) : returns the stack with the top element

removed4

• isEmpty(stack) : reports whether the stack is empty
3Read chapters 1 and 2 of the module handouts
4Triggers error if the stack is empty

10

Stacks as linked lists

30

15

11

5 To store a stack as a linked list we pick the faster of

the two options:

1. the top is at the beginning, i.e. 〈30, 15, 11, 5〉
2. the top is at the end, i.e. 〈5, 11, 15, 30〉

Question: Which one is better and why?

11

Since inserting and deleting from the beginning of a linked list is constant,

the first option is better. In other words, we take

• push = insert beg

• pop = delete beg

• is empty (for stacks) = is empty (for linked lists)

This way every operation on stacks takes constant time.

The second option would mean that push = insert end and pop

= delete end . Then, even if we stored the position of the end of the

linked list (to make sure insert end is fast), delete end would still

be slow (linear time) and so the second option is not reasonable.

Stacks as arrays

One can implement Stacks using a simple array in Java:

1 // I n i t i a l i z e an empty s t a c k :

2 s t a c k = new i n t [MAXSTACK] ;

3 s t a c k s i z e = 0 ;

Here the bottom of the stack is stored on position 0 of the array

and the top of the stack in position stack size-1 . We can

implement push and pop for this representation in constant

time.

=⇒ No matter if we store stacks as linked lists or arrays, in both

cases, push , pop , and is empty finish in constant time.

12

Storing stacks as arrays has the advantage that we avoid calling

allocate memory all the time (this takes time, even if it is done au-

tomatically for us, like in Java). On the other hand, we need to know the

maximum size of the stack in advance.

In practice, in Java, we normally use the library class Deque<...> , which

implements the Stack ADT as well as some others we will discuss and

adjusts to grow as the stack increases in size. We will see this later in this

lecture.

Queues

Queues = FIFOs (First-In-First-Out)

Queue is an abstract data type defined by its three operations:

• enqueue(x) puts value x at the rear of the queue

• dequeue() takes out a value from the front of the queue

If there are no values in the queue, it raises

EmptyQueueException .

• is empty() says whether the queue is empty

Rear Front

DequeueEnqueue

13

Queue is an abstract data type. A queue is a list of values (e.g. integers,

Booleans, ...). The two ends of the list are called the rear and front. We

enqueue a value (add it to the rear of the queue) and dequeue a value

(remove it from the front of the queue). Thus a queue behaves in a First

In First Out (FIFO) manner. If we try to dequeue from an empty queue, we

get an EmptyQueueException . In theory we should be able to enqueue

any number of values, but in practice that won’t be possible and we will

get an exception if we run out of memory.

Example
Starting from an empty queue, enqueue 4 and 3, dequeue, then

enqueue 1 and dequeue two times. What is the last value you get?

What would happen in the next dequeue?

Usage
A typical application of queues is a print queue: files are sent to

the queue for printing and are printed in the order in which they

were sent.

After sending a file, you know that only the jobs currently in the

queue will be printed before yours.

14

Queues are useful whenever we have need to process tasks in the order in

which they came. We demonstrate this in the printer queue but there are

many more examples (e.g. web server when serving websites).

Notice that since the tasks in a print queue are executed in the order in

which they came, there is no priority. Even as a lecturer I have to wait

for all student tasks that came before mine to finish before my file gets

printed.

Queue ADT

Here is a possible list of operations for a Queue ADT (many

variations are possible)5

Constructors and Accessors:

• EmptyQueue : returns an empty Queue

• push(element, queue) : (also called enqueue) pushes an

element onto the back of the given queue.

• top(queue) : (also called front) returns the value at the

front of the queue without changing the queue6

• pop(queue) : (also called dequeue) returns the queue with

the front element removed6

• isEmpty(queue) : reports whether the queue is empty

5Read chapters 1 and 2 of the module handouts
6Triggers error if the queue is empty

15

Queue as a linked list

In order to have an efficient implementation we need to store the

location of the last element in the linked list.

Remember: Dequeue from front, enqueue to rear

We have two options again:

1. Front at beginning of the linked list, rear at end

2. Rear at beginning of the linked list, front at end

Question: Which one is better and why?

16

How would enqueue and dequeue be implemented if we did (1) or (2)?

For (1) as long as we use 2 pointers in the head node, one to the first

node of the linked list, one to the last node, it will take constant time to

dequeue (remove from the start of the Linked List) and to enqueue (add

a node at the end of the linked list).

For (2), again with 2 pointers in the head node, we can enqueue in constant

time (insert a node at the start of the linked list). However, to dequeue,

we now need the address of the penultimate node of the linked list in order

to remove the last node, and to find that address, we will need to iterate

through the whole linked list, costing linear time.

Thus we can ensure constant time enqueues and dequeues in case (1)

• enqueue = insert end

• dequeue = delete beg

Case (2) gives us constant time enqueues but linear time dequeues.

Queue stored in an array (1st attempt)

Whenever we enqueue (resp. dequeue) we increment rear

(resp. front):

7 22 -3 10 10

rearfront

We eventually run out of space! To fix this, every time we

dequeue , move everything to the left. It works but is slow!

22
-3

10

10

7

front

rear

Instead we use a circular storage of a queue.

We move Front and Rear clockwise.

Works beautifully in theory but how do we

implement it in an array?

17

If we know that the size of queue is limited during the run of our program,

we can store the queue as an array. We store the front position and size

in variables front and size , respectively. Then, values stored in the

queue are stored on the positions front , front+1 , ..., front+size-1 .

We must maintain the invariant front+size 6 MAXQUEUE .

To enqueue we store the new value in position front+size and incre-

ment size . To dequeue we read out the value on position front and

increment front .

However, this way, we eventually reach the end of the array and we can’t

continue enqueueing elements even if there is space in the array to do so,

that is, the space in the array where old values were which have since been

dequeued.

We can fix this by, everytime we dequeue a value, copying all the elements

in the queue down to the start of the array so that front is back to

0. But this makes dequeue very slow. There is a better solution using a

Circular Array Queue Implementation

Digression: Invariants

An invariant is a condition on code. It must always be true during

the execution of some section of code, e.g. a loop, or during the

execution of a method, or, if it applies to a class, then it can be a

condition that must be met by all objects of the class on every

entry to and exit from the methods of the class even if it can be

temporarily false during the execution of those methods.

Invariants are important because they specify conditions that must

be met and maintained in parts of the code. So not only do they

communicate information to the reader of the code, but they are

tools that can be used both to identify and debug errors in the code

(e.g. print an error message if this invariant is broken, stop in the

debugger at any point when this invariant becomes false, etc.), and

can be used to mathematically prove that the program is correct.

18

Digression: div and mod (maths break)

For numbers a, b with b > 0 we write a div b to mean the

result of dividing a by b and discarding the remainder, and we

write a mod b to mean the reminder.

For example: 123 div 10 = 12 58.7 div 10 = 5

123 mod 10 = 3 58.7 mod 10 = 8.7

Example
Racing on a track: Assume that one lap in a race is 600 meters.

Then a runner who has run 1550 meters has completed

1550 div 600 = 2 laps and 1550 mod 600 = 350 meters of

the third lap.

19

Note that a div b is always an integer and 0 ≤ a mod b < b

such that

(a div b) ∗ b + a mod b = a.

Consequently: −7 div 10 = −1 and −7 mod 10 = 3

−123 div 10 = −13 and −123 mod 10 = 7.

mod can be used to define the floor function (rounding down to

an integer), we have

bxc = x div 1 and x div y = bx/yc

(very useful when we do complexity)

20

Note that in Java Math.floorDiv and Math.floorMod behave better

than % and / , respectively, because the latter interpret the operations

on negative numbers incorrectly (Java, and C, allows negative results for

mod).

More examples:

• 100 mod 10 = 0 (100 is divisible by 10)

• −18 div 10 = −2 (from 0, move backwards 2 * 10)

• −18 mod 10 = 2 (and then 2 steps forwards)

(it has to be in the bounds: 0 ≤ −18 mod 10 < 10)

• Floor: b14.3c = 14, b7.0c = 7, b−5.3c = −6

• Ceiling: d14.3e = 15, d7.0e = 7, d−5.3e = −5

Representing circles

Positions in the circle, numbered clockwise, correspond to the

positions in the array:

0

1

2

3

4

5 a
b

c

d
e

f

=⇒ a b c d e f

0 1 2 3 4 5

Example
For a position pos in the circle (e.g. pos = 5), moving

clockwise by one positions is computed as (pos + 1) mod 6 .

Or in general (pos + 1) mod circle length . 21

Circular queue: Array implementation

1 // I n i t i a l i z e an empty queue :

2 queue = new i n t [MAXQUEUE] ;

3 f r o n t = 0 ;

4 s i z e = 0 ;

We store values in the queue in between positions marked by

rear and front , that is,

• if front + size 6 MAXQUEUE then the queue consists of the

entries on positions front, front + 1, ..., front + size − 1:
front rear

• if front + size > MAXQUEUE then the queue consists of the

entries on positions front, front + 1, ...,MAXQUEUE − 1 and

0, 1, ..., (front + size −MAXQUEUE − 1):
frontrear

22

Circular queue: Array implementation

The invariants maintained in this implementation are:

• 0 6 front < MAXQUEUE

• 0 6 size ≤ MAXQUEUE

Note that rather than using a rear index variable, we will always

calculate it when we need it from front, size and MAXQUEUE.

Thus rear = (first + size) mod MAXQUEUE

The queue is full if size == MAXQUEUE and empty when

size == 0

To enqueue, we first check that the queue is not full, put the new

value at index position (first + size) mod MAXQUEUE , and

increment size by adding 1 to it.

To dequeue, we first check that the queue is not empty, get the

value at index position front , increment front by calculating

front = (front + 1) mod MAXQUEUE and decrement size by

subtracting 1 from it.
23

Circular queue: Array implementation

1 // I n i t i a l i z e empty queue :

2 queue = new i n t [MAXQUEUE] ;

3 f r o n t = 0 ;

4 s i z e = 0 ;

1 boolean i s emp t y () {
2 re tu rn s i z e == 0 ;

3 }
1 boolean i s f u l l () {
2 re tu rn s i z e == MAXQUEUE;

3 }
1 vo id enqueue (i n t v a l) {
2 i f (s i z e == MAXQUEUE) { throw QueueFu l lExcep t i on ; }
3 queue [(f r o n t+s i z e) mod MAXQUEUE] = v a l ;

4 s i z e ++;

5 }

1 i n t dequeue () {
2 i n t v a l ;

3 i f (s i z e == 0) { throw QueueEmptyException ; }
4 v a l = queue [f r o n t] ;

5 f r o n t = (f r o n t +1) mod MAXQUEUE

6 s i z e −−;
7 re tu rn v a l ;

8 }
24

Double Ended Queues: Deques

While the Java library does have a Stack<...> class, it is an old

design that has been kept for backwards compatibilty purposes and

should not normally be used. For both Stack and Queue

classes, you should use the Deque<...> class, which implements

a double-ended queue data type. This has implementations

ArrayDeque<...> and LinkedList<...> and supports

inserting at and removing from both ends.

Actually, the Deque<...> class is really a Java Interface, rather

than a full Class. This will be covered in your Java programming

module but the distinction is not important for the purposes of this

module.

25

Final points

As we will see, stacks and queues are used in many algorithms.

We often just say “make a stack” or “make a queue” and we don’t

care how they are implemented.

We know that, whether it is as an array or linked list, it can be

done efficiently.

26

Maths for Complexity Analysis

Maths introduction: Exponentials

an = a× a× . . .× a︸ ︷︷ ︸
n times

aman = a× . . .× a︸ ︷︷ ︸
m times

× a× . . .× a︸ ︷︷ ︸
n times

= am+n

(am)n = am × · · · × am︸ ︷︷ ︸
n times

= amn = (an)m

a(mn) = a

n times︷ ︸︸ ︷
m × · · · ×m NOTE: a(mn) 6= (am)n

a0 = 1 because a0a1 = a0+1 = a1 ⇒ a0 = 1

a
1
n = n
√
a because a

1
n × · · · × a

1
n︸ ︷︷ ︸

n times

= a
n
n = a

a−n =
1

an
because a−nan = a0 = 1

1

Exponentials: Examples

23 = 8

102 = 100

101 = 10

100 = 00 = 1

91/2 = 3

2−3 = 1/8
√

5×
√

5 = 5
1
2 × 5

1
2 = 5

1
2

+ 1
2 = 51 = 5

163/2 = (161/2)3 = 43 = 64

2

Maths introduction: Logarithms

loga b is the number you have to raise a to in order to get b:

loga b = c means that ac = b

⇒ aloga b = b

By applying loga to both sides, and letting c = loga b, we get

loga

(
aloga b

)
= loga b

⇒ loga (ac) = c (1)

Thus loga • and a• are inverses of each other and cancel.

log10 1000000 = 6

log10 0.0001 = −4

log2 32 = 5

log8 32 = log8(25) = log8

(
(

3
√

8)5
)

= 5/3
3

Maths introduction: Rules for Logarithms

loga bc = loga b + loga c:

(bc) = (b)(c)

⇒ aloga bc = aloga baloga c

= aloga b+loga c

⇒ loga a
loga bc = loga a

loga b+loga c

⇒ loga bc = loga b + loga c

loga
b
c = loga b − loga c (similarly)

loga b
c = loga b × · · · × b︸ ︷︷ ︸

c times

= loga b + · · ·+ loga b︸ ︷︷ ︸
c times

= c loga b

4

Maths introduction: Changing base of Logarithms

logc x = (logc b)(logb x), First (impressive looking) proof:

x = x

= blogb x

=
(
c logc b

)logb x

= c(logc b)(logb x)

⇒ logc x = logc c
(logc b)(logb x)

= (logc b)(logb x)

logc x = (logc b)(logb x), Second, simpler proof:

x = blogb x

⇒ logcx = logcb
logb x

= (logb x)(logc b)
5

Maths introduction: More facts about Logarithms

loga a = 1

loga 1 = 0

loga x when x ≤ 0 is undefined

lim
x→0+

loga x = −∞

lim
x→+∞

loga x =∞

6

Complexity

Linear search (worst case complexity)

1 i n t s e a r c h (i n t [] a r r a y , i n t x) {
2 i n t n = a r r a y . l e n g t h ;

3 i n t i = 0 ;

4

5 whi le (i < n) { // i t e r a t e ove r the e l ement s

6 i f (a r r a y [i] == x) {
7 r e t u r n i ; // found i t !

8 } e l s e {
9 i = i + 1 ; // t r y the next one

10 }
11 }
12

13 r e t u r n −1; // the v a l u e not found

14 }

Worst case: the value x is not in the array.

Number of steps: 2 + n × (1 + 1 + 1) + 2 = 3n + 4
(2nd and 3rd lines, then n -times 5th, 6th and 9th lines, and finally the 5th and 13th line)

7

Linear search (worst case complexity), recursively

1 i n t s e a r c h (i n t [] a r r a y , i n t x) {
2 s e a r c h r e c (a r r a y , 0 , x) ;

3 }
4

5 i n t s e a r c h r e c (i n t [] a r r a y , i n t i , i n t x) {
6 i f (i == a r r a y . l e n g t h)

7 r e t u r n −1; // the v a l u e not found

8

9 i f (a r r a y [i] == x)

10 r e t u r n i ; // found i t !

11

12 i n t i n e x t = i + 1 ; // t r y the next one

13 r e t u r n s e a r c h r e c (a r r a y , i n e x t , x) ;

14 }

Worst case: the value x is not in the array.

Number of steps: 1 + n × (1 + 1 + 1 + 1) + 3 = 4n + 4
(2nd line, then n -times 6th, 9th, 12th and 13th lines, and finally 6th and 7th line)

8

What is the difference between the two?

From the theoretical perspective we are more interested in how the

number of steps grows with respect to the input size, rather than

in the actual number of steps. This is because the actual speed

depends on

• the hardware on which it runs,

• programming language used (or its compiler),

• how well is the implementation optimised, ...

9

Performance of Algorithms

A number of timed searches were performed on a sorted list of

10,000 numbers. When searching for a number at the start, at the

end, and that was not in the list respectively, the timings were in

the following ranges:

• Linear search:

• Start: 2 µsecs

• End: 391 µsecs

• Not in: 356 µsecs

• Binary search:

• Start: 6 µsecs

• End: 5 µsecs

• Not in: 5 µsecs

10

Performance of Algorithms

So: Binary search seems to be faster than linear search

• unless searching for the first item in the list

• on the machine that these timings were run on

• when run on sorted lists of numbers

• when the list is of length 10,000

• ... and possibly with other restrictions

We need a better way to be able to think about and compare

algorithm performance.

11

Time and Space Performance

There are 2 dimensions of performance we might be interested in:

• Time: How long it takes to run the algorithm:
• Measuring this in normal time units makes us dependent on

the machine we run it on.

• Instead measure it in numbers of steps: e.g. the number of

additions or multiplications, the number of comparison

operations, the number of memory accesses etc.

• Space: How much memory it requires:
• Different algorithms to accomplish the same result might use

different amounts of memory. For example:

• One takes 1,000,000 steps and require only 2 integer variables

• Another take 20,000 steps but requires a list of length 1,000

To choose between algorithms, we need to understand both its

time and space performance.

12

Complexity

Even if we know an algorithm’s time performance (in units of

steps) and space performance (in units of words of memory), we

still do not yet have a way of capturing how that performance

changes with different sizes of problems.

Solution: parameterize the performance by the size of the input:

• This algorithm takes N steps on an input of size N

• This algorithm takes 2N2 + N steps on an input of size N

• This algorithm uses 3N words of memory on an input of size N

13

Average and Worst Case Complexity

Linear search took different times depending on whether the item

was at the start of the list or at the end even though the size of

the list didn’t change:

• Average case time complexity: Consider every possible case
for an input of size n and calculate the average
• Linear search on n elements requires 1 comparison if the item

is first in the list.

• It requires 2 comparisons if the item is second in the list. . .

• It requires n comparisons if the item is last in the list.

• Average time complexity: 1+2+···+n
n = n(n+1)

2n = n+1
2

comparisons

• Worst case time complexity: Choose the case that will take
the largest number of steps.
• Linear search for the last item in the list: n comparisons

14

Worst Case Complexity of Binary Search

How large a list, n can we search with c comparisons?

1: 1 = 1 = 21 − 1

2: 1 + 1 + 1 = 3 = 22 − 1

3: 3 + 1 + 3 = 7 = 23 − 1

4: 7 + 1 + 7 = 7 = 24 − 1

In general: c comparisons lets us search a list of length 2c − 1

We want to know the inverse: how many comparisons do we need

to search a list of length n?

If we ignore the “-1”, which only has a small relative effect, the

worst time complexity of binary search is log2(n)

15

Average Case Complexity of Binary Search

What about the average case? Take a list of length n:
• Only 1 case where we find the target item in 1 comparison

• 2 cases where we find the item in 2 comparisons

• 4 cases where we find the item in 3 comparisons

•
...

• n/2 cases where we find the item in log2(n) comparisons

Thus n cases in total where:
• Half have the worst case complexity of log2(n)

• One quarter have complexity log2(n)− 1

• One eighth have complexity log2(n)− 2

•
...

Average case is only slightly less than the worst case:

Approximate it with the worst case.
16

Comparing Functions

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

·1010

nn

2n

n2

n log n
n

log n
log log n

1

17

Comparing Functions

2 4 6 8 10

0

200

400

600

800

1,000
2n

n2

n log n
n

log n
log log n

1

18

Comparing Functions

2 4 6 8 10

0

20

40

60

80

100 n2

n log n
n

log n
log log n

1

19

Comparing Functions

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

·104

n log n
n

log n
log log n

1

20

Comparing Functions

0 200 400 600 800 1,000

0

200

400

600

800

1,000
n

log n
log log n

1

21

Comparing Functions

0 200 400 600 800 1,000

0

2

4

6

8

10 log n
log log n

1

22

Comparing Functions

2 4 6 8 10

0

5

10

15

20
nn

2n

n2

n log n
n

log n
log log n

1

23

Big O notation

The precise number of steps is often too detailed to get a clear

understanding of the performance of an algorithm:

• What if an algorithm does a comparison and a multiplication
on every element of a list:
• Complexity is n steps, where a step is a comparison AND a

multiplication

• Complexity is 2n steps, where a step is a comparison OR a

multiplication

The difference between an algorithm that has time complexity n

and one that has 2n is small in relation to the difference between

two algorithms that have respective complexities of n and n2.

Similarly in an algorithm that has complexity n2 + n, the n part

only makes a small contribution.

Solution: simplify to headline complexity 24

Big O notation

Describe complexity by the most significant overview feature:

f (n) = O(g(n)) ⇐⇒ |f (n)| ≤ |Cg(n)|

for positive constants C , n0 where n > n0

Idea: f does not grow at a faster rate than g as n increases. It

might grow at the same rate or it might grow at a slower rate.

Examples (restrict ourselves to n ≥ 4):

• 2n = O(n)?

• 2n + 100 = O(n)?

• n = O(1)?

• 3n2 + n = O(n2)?

• 3n2 + n = O(n3)?

• 3n2 + n = O(n)?
25

Big O notation

Examples (restrict ourselves to n ≥ 4):

• 2n = O(n)?

• TRUE: choose C to be 3

• 2n + 100 = O(n)?

• TRUE: choose C to be 1000

• n = O(1)?

• FALSE: no value of C is large enough so that n ≤ C

• 3n2 + n = O(n2)?

• TRUE: 3n2 + n ≤ 3n2 + n2 = 4n2 choose C to be 5

• 3n2 + n = O(n3)?

• TRUE: 3n2 + n ≤ 4n2 ≤ 4n3 choose C to be 5

• 3n2 + n = O(n)?

• FALSE: no value of C is large enough so that 3n2 + n ≤ Cn

26

More Big O examples

For all values of n ≥ 4:

1 ≤ log log n ≤ log n ≤ n ≤ n log n ≤ n2 ≤ 2n ≤ nn

Therefore 1 = O(log log n)

log log n = O(log n)

log n = O(n)

n = O(n log n)

n log n = O(n2)

n2 = O(2n)

2n = O(nn)

Thus, for example:

3nn+42n+100n2+454n log n+24n+12 log n+52 log log n+43 = O(nn)

27

Be careful with Big O

Big O is a notation, not a function. Thus O(f (n)) is not a

function, even if it looks like one:

• “3n2 + 4 = O(n2)” is just a shorthand way of writing

“|3n2 + 4| ≤ |Cn2| for some constant C”

• “O(n2) = 3n2 + 4” does not have any meaning

• If it did, we could do nasty things like:

3 = O(1) = 2 hence 3 = 2 WRONG!!

Big O notation can be made mathematically precise by defining it

to be the class of functions with complexity O(f (n)). Therefore we

can say that the complexity of an algorithm is “in” O(f (n)) or,

shortening it, simply say that, for an algorithm X , we have that

X ∈ O(f (n))

28

Linear search (average case complexity)

1 i n t s e a r c h (i n t [] a r r a y , i n t x) {
2 i n t n = a r r a y . l e n g t h ;

3 i n t i = 0 ;

4

5 whi le (i < n) {
6 i f (a r r a y [i] == x) {
7 r e t u r n i ;

8 } e l s e {
9 i ++;

10 }
11 }
12

13 r e t u r n −1; // the v a l u e not found

14 }

Average case: the value x is on the position n
2

(We assume that x

appears once in the array)

Number of steps: 2 + n
2 × 3 = 3

2n + 2 =⇒ it is in O(n)
(one iteration of the while loop is 3 steps, no matter if we found x or not)

29

Previously we computed that the worst case complexity of linear search

is O(n). This happens if the value is not in the array and we need to

search through the whole array.

Next, we consider a situation when the value x is in the array. (And for

simplicity we assume that it is there only once). How many steps does it

take on average to find x ?

Because x can be on any position, it is on average in the middle of the

array. This means that we find it on position n
2 and so the while-loop

evaluates n
2 -many times.

Binary Search (worst case and average case)

Searching x in a sorted array arr :

1. Compare x and arr[arr.length div 2] .

2. If x is bigger, recursively search arr on positions

(arr.length div 2) + 1 , ..., arr.length - 1 .

3. Otherwise, recursively search arr on positions

0 , ..., arr.length div 2

4. We continue like this until we are left with only one element

in the array. Then, return whether this element equals x .

The length of the array we search through reduces by one half in

every step and we continue until the length is 1.

For simplicity assume that the length of arr is n = 2k

=⇒ the number of steps is O(k) = O(log2 n). 30

Other Complexity Measures

Big O and Friends

So far we have looked at Big O as a way to identify the complexity

of an algorithm, and that is what we will be most concerned with.

But there are others:

• Big O: f (n) = O(g(n)): g is an upper bound on how fast f

grows as n increases.

• Little o: f (n) = o(g(n)): A stricter upper bound than Big O.

• Theta: f (n) = Θ(g(n): More precise than Big O and Little o,

it provides both upper and lower bounds, which are given by

the same function, except with different constant factors.

That is, f and g grow at the same rate.

• Asymptotically Equal: f (n) ∼ g(n): stricter upper and

lowerbounds

• Omega: f (n) = Ω(g(n)): a lower bound on how fast f grows

as n increases (the lower bound equivalent of big O) 31

Big O revisited

f (n) = O(g(n)) ⇐⇒ |f (n)| ≤ |Cg(n)|

for some constants C , n0 where n > n0

• f grows at the same rate or slower than g .

• But 2n2 + n = O(n2), so we can have f (n) > g(n) for all n.

• So Big O only refers to relative growth rate, NOT relative

speed or memory usage.

32

Little o

f (n) = o(g(n)) ⇐⇒ lim
n→∞

f (n)

g(n)
exists and is equal to 0

This makes g an upperbound on f but a stronger one than Big O:

Note that 2n2 = O(n3) and 2n2 = O(n2) (choose C = 3)

2n2 = o(n3) because:

lim
n→∞

2n2

n3
= lim

n→∞

2

n

= 0

But it is not true that 2n2 = o(n2) because:

lim
n→∞

2n2

n2
= lim

n→∞
2

= 2
33

Theta

f (n) = Θ(g(n)) ⇐⇒ c1g(n) ≤ f (n) ≤ c2g(n)

for positive constants c1, c2, n0, and n > n0

This means that f and g have the same rates of growth, with

some constant multiple, i.e. that f is bounded above and below by

(possibly different) multiples of g .

This is only true if f (n) = O(g(n)) and g(n) = O(f (n))

Example: x2 + 2x + 1 = Θ(x2)

But it is not true that x2 + 2x + 1 = Θ(x3)

34

Asymptotically Equal

f (n) ∼ g(n) ⇐⇒ lim
n→∞

f (n)

g(n)
exists and is equal to 1

This has the same relation to Theta that Little o has to Big O:

Asymptotically Equal is a tighter upper and lowerbound than

Theta.

x2 + x = Θ(x2) and x2 + x ∼ x2

However, 2x2 + x = Θ(x2) and it is NOT true that 2x2 + x ∼ x2

35

Omega

f (n) = Ω(g(n)) ⇐⇒ |f (n)| ≥ |cg(n)|

for positive constants c , n0 where n > n0

This provides a lower bound on f : As f grows, it will always grow

at least at the same rate as g and it could grow faster.

36

Amortized Complexity

Different kinds of complexities

Average Case complexity

= average complexity over all possible

inputs/situations

(we need to know the likelihood of each of the

input!)

Worst Case complexity

= the worst complexity over all possible

inputs/situations

Best Case complexity

= the best complexity over all possible

inputs/situations

Amortized complexity

= average time taken over a sequence of consecutive

operations 37

We will often see algorithms where the worst case complexity is much

more than the average case complexity. It depends on the usage, if you’re

processing a lot of data, occasional bad performance might be OK.

However, if we are serving a customer and (in the worst case) she has to

wait a long time, that’s not good for the company’s reputation.

In average-, worst- or best-case complexities, we are concerned with the

performance of one (independent) operation. The amortized complexity

is different: we are thinking about the average time complexity among a

number of successive operations.

The idea is that, sometimes, you deliberately put extra effort in some

operations, in order to speed up subsequent operations. For example, you

might spend some time cleaning up or reorganizing of your data structure

in order to improve the speed of the coming operations.

Whenever you are reorganizing your data structure, it might slow you

down now but you’ll benefit from this later (and hopefully many times).

Example: Linear search

What is the time complexity of linear search, where the searched

value is stored in x ? Assume that the length of the array is n.

• Worst Case: x is at the end of the array

=⇒ we need to traverse n elements

• Best Case: x is at the beginning of the array

=⇒ we only compare with the first one

• Average Case (assuming that x is in the array) – we

consider two scenarios:

(1) The likelihood of x being on any position is uniform. In

other words, the chance that x is on position 0 is the same

as for 1 or any other position.

Then, the average number of traversed elements is equal to

1 + 2 + 3 + ...+ n

n
=

n(n+1)
2

n
=

n + 1

2 38

We assume that x is in the array and it is there exactly once! Otherwise,

we would have to compute the average complexity slightly differently.

Recall that we have a formula for triangular numbers:

1 + 2 + . . .+ n =
n(n + 1)

2

The arithmetic progression 1 + 2 + . . .+ n can be also written as
∑n

i=1 i .

Another example of a progression for which we have an exact formula is

the following geometric progression:

1 + a + a2 + a3 + · · ·+ ak−1 =
ak − 1

a− 1

This is easily shown by letting S = 1 + a + a2 + · · ·+ ak−1

Then (a− 1)S = ak − 1⇒ S = ak−1
a−1

Example: Linear search

• Average Case (assuming that x is in the array)

The average number of traversed elements is computed as

1P(1) + 2P(2) + 3P(3) + · · ·+ nP(n)

where P(i) denotes the likelihood (or probability) that x is

stored on the i th position. This means that 0 ≤ P(i) ≤ 1

and the sum of all likelihoods is equal to 1, i.e.

P(1) + P(2) + . . . + P(n) = 1.

(In the uniform case P(i) = 1
n for every position.)

Note: The sum 1P(1) + 2P(2) + . . . +nP(n) can be also written as
∑n

i=1 iP(i).

39

Example: Amortized car cost

Oil consumption: 8 litres per 100 miles

Price of 1 litre is £1.20

=⇒ £9.60 per 100 miles

Extra expenses

• new tyres £320 every 70 000 miles

• new brakes £250 every 30 000 miles

• fix gearbox £300 every 130 000 miles

• fix clutch £406 every 100 000 miles

=⇒ extra £1.93 per 100 miles

=⇒ £11.53 is amortized cost per 100 miles

(? those numbers are somewhat made up!) 40

Amortized complexity: Dynamic array (first attempt)

Naive approach:

1. initially allocate an array of 1000 entries

2. whenever the array becomes full, increase its size by 100

To insert n entries, starting from empty, how long does it take?

For simplicity assume that n = 1000 + 100k (for some k).

1000 insertions +

1000 copies + 100 insertions +

1100 copies + 100 insertions +

1200 copies + 100 insertions +

1300 copies + 100 insertions +

...

In total:

• insertions: 1000 + 100k

• copies:

1000k

+ 100×(1 + 2 + . . .+ (k − 1))

= 1000k + 50k(k − 1)

41

At the beginning we have

MAXSIZE = 1000;
arr = new int[MAXSIZE];
stored = 0;

We add elements to it by storing them at the end and increasing

stored by one. Then, anytime stored == MAXSIZE (i.e. arr

becomes full), we have to allocate a new array of size

MAXSIZE = MAXSIZE + 100 and copy all elements from arr into it.

Recall that 1 + 2 + . . .+ n = n(n+1)
2 therefore

1 + 2 + . . .+ (k − 1) =
(k − 1)k

2

The following analysis, however, does not depend on the exact choice of

the parameters. If we started with an array of length 10 and increased its

size by 5 every time it becomes full, for example, the resulting amortized

complexity would still be the same.

Copies : 1000k + 50k(k − 1)

Insertions: 1000 + 100k

Copies and insertions together: 1000(k + 1) + 100k + 50k(k − 1)

Amortized cost of one insertion:

1000(k + 1) + 100k + 50k(k − 1)

1000 + 100k

The numerator is in θ(k2) and denominator is in θ(k)

=⇒ the whole fraction is in θ(k).

But O(n) = O(k) because n = 1000 + 100k

=⇒ the amortized complexity of insertion is O(n).

42

The amortized cost is computed as the average number of operations

needed for one insertion. In our case:

number of copying and inserting

number of inserting

We see that copying is the problem. In the following smarter approach

we try to suggest a different strategy which makes sure that copying

happens less often.

Amortized complexity: Dynamic array (= Java’s ArrayList)

Smart approach:

1. initially allocate an array of 1000 entries

2. whenever the array becomes full, double its size

To insert n entries, starting from empty, how long does it take?

For simplicity assume that n = 1000× 2k (for some k).

1000 insertions +

1000 copies + 1000 insertions +

2000 copies + 2000 insertions +

4000 copies + 4000 insertions +

8000 copies + 8000 insertions +

...

In total:

• insertions:

1000

+1000×(1+2+4+ . . .+2k−1)

• copies:

1000× (1 + 2 + 4 + . . .+ 2k−1)

43

Copying and inserting together:

1000 + 2×1000×(1 + 2 + 4 + . . .+ 2k−1)

Because 1 + 2 + 4 + . . .+ 2k−1 = 2k − 1, this is equal to

1000 + 2×1000×(2k − 1)

Amortized cost of one insertion:

2×1000×2k − 1000

n

Because n = 1000× 2k , the numerator is in Θ(n) and denominator

is in Θ(n)

=⇒ the whole fraction is in Θ(1)

=⇒ amortized complexity of insertion is Θ(1)

44

Comparison

Inserting at the end of an array

Average Case Best Case Worst Case Amortized

Naive alg. — O(1) O(n) O(n)

Smart alg. — O(1) O(n) O(1)

(Average Case complexity doesn’t make sense to consider here.)

Search in a sorted array

Average Case Best Case Worst Case Amortized

Linear srch O(n) O(1) O(n) O(n)

Binary srch O(log n) O(log n) O(log n) O(log n)

(Amortized complexity is the same as Average Case complexity because the

previous searches don’t have any effect on the next one.)

45

We see that the best case and worst case complexities of the Naive

algorithm and the Smart algorithm are the same. The only difference is

the amortized complexity. The reason why the amortized complexity of

the naive algorithm is worse is because the worse case happens too often.

Average Case complexity doesn’t make sense to consider in the first

table. The time complexity does not depend on the “size” of the value

that is being added. It only depends on the current number of elements

stored in the array.

Trees

Trees

A tree is a very flexible and powerful data structure that, like a

linked list, involves connected nodes, but has a hierarchical

structure instead of the linear structure of linked lists.

Depending on the number of

child nodes that each node has:

• Unary trees (0–1 children)

= Linked Lists,

• Binary trees (0–2),

• Ternary trees (0–3),

• Quad trees (0–4), ...

33

10 30

21 1

0th level

(root)

1st level

2nd level

(leaves)

size = 5

height = 2

Size = number of nodes

Height = length of longest path from the root to a leaf
1

Tree Terminology

• Root: the unique node at the base of the tree.

• Each node is connected by a link, called an

edge, to each of its child nodes.

• Each child node has exactly one parent node.

• Siblings are nodes with the same parent.

• A node with no child nodes is called a leaf

33

10 30

21

25

1

• An ancestor/descendent of a node is the parent/child of the

node or (inductively) the ancestor/descendent of that

parent/child.

• A path is a sequence of connected edges between two nodes.

2

Tree Terminology

• Trees have the property that there is exactly 1 path between

each node and the root

• The depth or level of a node is the length of the path from

the node to the root (root has level 0).

• The height of a tree is the length of the longest path from the

root to a leaf.

• The size of a tree is the number of nodes in the tree.

• A tree with one node has size 1 and height 0.

• An empty tree (with no nodes) has size 0 and, by convention,

a height of -1.

3

Tree Implementation Options

There are 3 common approaches to implementing trees:

1. Basic: Use nodes like doubly linked list nodes with a value

field, and left and right child pointers

2. Sibling List: Use nodes with a value field, a single children

pointer, and a pointer to the next sibling. This is good for

trees with a variable number of children in each node.

3. Array: For binary trees, use arrays with a layout based on

storing the root at index 1, then the children of the node at

index i is stored at index 2 ∗ i and 2 ∗ i + 1.

4

Tree Implementation Options: Basic

• 33 •

× 10 × • 30 •

× 21 • × 1 ×

× 25 ×

5

Tree Implementation Options: Sibling List

• 33 ×

× 10 • • 30 ×

• 21 • × 1 ×

× 25 ×

6

Tree Implementation Options: Array

33 10 30 21 1 25
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7

Binary Tree ADT

Just as with lists, we can define the Binary Tree Abstract Data

Type inductively:

• Constructors:
• EmptyTree : returns an empty tree

• MakeTree(v, l, r) : returns a new tree where the root

node has value v , left subtree l and right subtree r

• Accessors:
• isEmpty(t) : return true if t is the empty tree, otherwise

returns false

• root(t) : returns the value of the root node of the tree t 1

• left(t) : returns the left subtree of the tree t 2

• right(t) : returns the right subtree of the tree t 2

• Convenience Constructor:
• Leaf(v) = MakeTree(v, EmptyTree, EmptyTree)

1Triggers error if the tree is empty
8

Example: Construct a Tree

1 MakeTree (3 3 ,

2 L e a f (1 0) ,

3 MakeTree (3 0 ,

4 MakeTree (2 1 ,

5 EmptyTree ,

6 L e a f (2 5)) ,

7 L e a f (1)))

33

10 30

21

25

1

9

Example: Reverse a tree

1 r e v e r s e T r e e (t) {
2 i f (i sEmpty (t))

3 re tu rn (t)

4 e l s e

5 re tu rn (MakeTree (r o o t (t) ,

6 r e v e r s e T r e e (r i g h t (t)) ,

7 r e v e r s e T r e e (l e f t (t))))

33

10 30

21

25

1

33

30

1 21

25

10

10

Example: Flatten a tree into a list

Here we assume that we have the code to append two lists (see

the handout dsa-slides-02-01-intro-ADT.pdf) and that

isEmpty(...) can distinguish between the list and the tree

version (e.g. by qualifying it with the ADT name):

1 f l a t t e n (t) {
2 i f Tree . i sEmpty (t)

3 re tu rn EmptyL i s t

4 e l s e

5 re tu rn append (f l a t t e n (l e f t (t)) ,

6 MakeList (r o o t (t) , f l a t t e n (r i g h t (t)))))

7 }

11

Quad Trees

Quad Trees

A Quad Tree is a particular kind of tree that differs from the binary

tree that we have looked at so far in two respects:

• The values are ONLY at the leaf level: there are no values in

internal nodes of the tree

• Internal nodes have 4 children

This data structure is particularly useful in representing and

manipulating some kinds of 2-dimensional data such as images. A

typical application is in image compression.

12

Quad Trees

• • • •

0 10 • • • • 20

50 • • • • 40 30

60 70 • • • • 80

110 120 100 90

13

Quad Trees

0 10

20

50

40 30

60 70

80
110 120

100 90

14

Quad Tree ADT

• Constructors:
• baseQT : returns a single, leaf node quad tree with a value

• MakeQT(luqt, ruqt, llqt, rlqt) : returns a new quad

tree built from four sub-quad trees.

• Accessors:
• isValue(qt) : return true if qt is a value node quad tree,

otherwise returns false

• lu(qt) : returns the left upper sub-quad tree of qt 2

• ru(qt) : returns the right upper sub-quad tree of qt 2

• ll(qt) : returns the left lower sub-quad tree of qt 2

• rl(qt) : returns the right lower sub-quad tree of qt 2

If qt is a value node quad tree, then we conventionally refer to

the value stored in the node as qt , rather than define another

accessor value(qt) for that purpose.
2Triggers an error if the qt is a value node quad tree 15

Example

1 r o t a t e (qt) {
2 i f (i s V a l u e (qt))

3 re tu rn qt

4 e l s e

5 re tu rn makeQT(r o t a t e (r l (qt)) ,

6 r o t a t e (l l (qt)) ,

7 r o t a t e (ru (qt)) ,

8 r o t a t e (l u (qt)))

16

Binary Search Trees

Binary Search Trees

A Binary Search Tree is a tree which is

either empty or

1. values in the left subtree are smaller

than in the root

2. values in the right subtree are larger

than in the root

3. root’s left and right subtrees are also

Binary Search Trees

4

2

1 3

5

1, 2, 3, 4, 5

=⇒ values in the flattened Binary Search Tree are in order!

A Binary Search Tree is a Binary Tree, so the same constructors

and accessors apply. It is just that there is an extra constraint that

the node value ordering must be maintained during construction

and manipulation.
17

Binary Search Trees: Insertion

1 i n s e r t (v , b s t) {
2 i f (i sEmpty (b s t))

3 re tu rn MakeTree (v , EmptyTree , EmptyTree)

4 e l s e i f (v < r o o t (b s t))

5 re tu rn MakeTree (r o o t (b s t) ,

6 i n s e r t (v , l e f t (b s t)) ,

7 r i g h t (b s t))

8 e l s e i f (v > r o o t (b s t))

9 re tu rn MakeTree (r o o t (b s t) ,

10 l e f t (b s t) ,

11 i n s e r t (v , r i g h t (b s t)))

12 e l s e e r r o r (” E r r o r : v a l u e a l r e a d y i n t r e e ”)

13 }

This creates a new BST which is a copy of the old one but with

the extra value inserted correctly. For many applications, this is

inefficient because we usually do not need a new copy; we usually

want to update the data structure we have in place.
18

Binary Search Trees: Insertion in Java

We can instead insert the value in place, modifying an existing

BST if we use pointers. Here is an implementation in Java (full

working program is in Canvas):

1 pub l i c c l a s s BSTTree {
2 p r i v a t e BSTNode t r e e = nu l l ;

3

4 p r i v a t e s t a t i c c l a s s Node {
5 p r i v a t e i n t v a l ;

6 p r i v a t e Node l e f t , r i g h t ;

7

8 pub l i c BSTNode (i n t v a l , Node l e f t , Node r i g h t){
9 t h i s . v a l=v a l ; t h i s . l e f t = l e f t ; t h i s . r i g h t=r i g h t ;

10 }
11

12 // i n s e r t methods he r e

13 }
19

Binary Search Trees: Insertion in Java

1 pub l i c vo id i n s e r t (i n t v) {
2 i f (t r e e == nu l l) t r e e = new Node (v , nu l l , nu l l) ;

3 e l s e i n s e r t (v , t r e e) ;

4 }
5

6 p r i v a t e vo id i n s e r t (i n t v , Node p t r) {
7 i f (v < p t r . v a l) {
8 i f (p t r . l e f t == nu l l)

9 p t r . l e f t = new Node (v , nu l l , nu l l) ;

10 e l s e i n s e r t (v , p t r . l e f t) ;

11 }
12 e l s e i f (v > p t r . v a l) {
13 i f (p t r . r i g h t == nu l l)

14 p t r . r i g h t = new Node (v , nu l l , nu l l) ;

15 e l s e i n s e r t (v , p t r . r i g h t) ;

16 }
17 e l s e throw new E r r o r (” Value a l r e a d y i n t r e e ”) ;

18 } 20

Searching Binary Search Trees

Starting from the root node, how do we determine whether a value

x is in the tree?

If the tree is empty, x is not in the tree! Otherwise, compare x

and the value stored in the root. There are three possibilities:

• They are equal =⇒ we found it!

• x is smaller =⇒ we search the left subtree.

• x is larger =⇒ we search the right subtree.

21

Searching Binary Search Trees Recursively

1 i s I n (v a l u e v , t r e e t) {
2 i f (i sEmpty (t))

3 re tu rn f a l s e

4 e l s e i f (v == r o o t (t))

5 re tu rn t rue

6 e l s e i f (v < r o o t (t))

7 re tu rn i s I n (v , l e f t (t))

8 e l s e

9 re tu rn i s I n (v , r i g h t (t))

10 }

22

Searching Binary Search Trees Iteratively

1 i s I n (v a l u e v , t r e e t) {
2 whi le ((not isEmpty (t)) and (v != r o o t (t)))

3 i f (v < r o o t (t))

4 t = l e f t (t)

5 e l s e

6 t = r i g h t (t)

7 re tu rn (not isEmpty (t))

8 }

23

Searching Binary Search Trees

Compare

complexities:

1

2

3

4

. . .

vs.

4

2

1 3

6

5 7

• For the left case, complexity of search is O(n)

• For the right case, complexity of search is O(log2 n)

• For the average case (not proven here), complexity of search

is also O(log2 n)

• On average, complexity of insertion is O(log2 n), because it

depends on the height of the Binary Search Tree, which is

O(log2 n)

• Average height of a General Binary Tree is O(
√
n) 24

Deleting from a Binary Search Tree

• First Option:
• Insert all items except the one to be deleted into a new BST

• n inserts of complexity O(log2 n), results in complexity

O(n log2 n)

• Worse than deleting from an array: O(n)

• Second Option:
1. Find the node containing the element to be deleted:

2. If it is a leaf, just remove it

3. Else, if only one of the node’s children is not empty, replace

the node with the root of the non-empty subtree

4. Else,

4.1 find the left-most node in the right sub-tree (this contains the

smallest value in the right sub-tree)

4.2 replace the value to be deleted with that of the left-most node

4.3 replace the left-most node with its right child (may be empty)

• Complexity O(log2 n)
25

Deleting from a Binary Search Tree

Delete 11:

8

3

1 6

7

11

9

10

14

12 15

8

3

1 6

7

12

9

10

14

15

Delete 8:

8

3

1 6

7

12

9

10

14

15

9

3

1 6

7

12

10 14

15

26

Deleting from a Binary Search Tree

1 d e l e t e (v a l u e v , t r e e t) {
2 i f (i sEmpty (t))

3 e r r o r (” E r r o r : g i v e n i tem i s not i n g i v e n t r e e ”)

4 e l s e

5 i f (v < r o o t (t))

6 re tu rn MakeTree (r o o t (t) , d e l e t e (v , l e f t (t)) , r i g h t (t))

7 e l s e i f (v > r o o t (t))

8 re tu rn MakeTree (r o o t (t) , l e f t (t) , d e l e t e (v , r i g h t (t)))

9 e l s e

10 i f (i sEmpty (l e f t (t)))

11 re tu rn r i g h t (t)

12 e l s e i f (i sEmpty (r i g h t (t)))

13 re tu rn l e f t (t)

14 e l s e re tu rn

15 MakeTree (s m a l l e s t N o d e (r i g h t (t)) , l e f t (t) ,

16 removeSmal les tNode (r i g h t (t))

17 }
27

Deleting from a Binary Search Tree

1 s m a l l e s t N o d e (t r e e t) {
2 // P r e c o nd i t i o n : t i s a non−empty b i n a r y s e a r c h t r e e

3 i f (i sEmpty (l e f t (t))

4 re tu rn r o o t (t)

5 e l s e

6 re tu rn s m a l l e s t N o d e (l e f t (t)) ;

7 }
8

9 removeSmal les tNode (t r e e t) {
10 // P r e c o nd i t i o n : t i s a non−empty b i n a r y s e a r c h t r e e

11 i f (i sEmpty (l e f t (t))

12 re tu rn r i g h t (t)

13 e l s e

14 re tu rn MakeTree (r o o t (t) ,

15 removeSmal les tNode (l e f t (t)) ,

16 r i g h t (t))

17 }
28

Checking whether a Binary Tree is a BST

Simple algorithm:

1. If the tree is empty, it is a valid BST
2. Else, it is a valid BST if:

2.1 all values in the left branch are less than the root and

2.2 all values in the right branch are greater than the root and

2.3 the left branch is a valid BST and

2.4 the right branch is a valid BST

1 i s b s t (t r e e t) {
2 i f (i sEmpty (t))

3 re tu rn t rue

4 e l s e

5 re tu rn (a l l s m a l l e r (l e f t (t) , r o o t (t)) and

6 i s b s t (l e f t (t)) and

7 a l l b i g g e r (r i g h t (t) , r o o t (t)) and

8 i s b s t (r i g h t (t)))

9 } 29

Checking whether a Binary Tree is a BST

1 a l l s m a l l e r (t r e e t , v a l u e v) {
2 i f (i sEmpty (t))

3 re tu rn t rue

4 e l s e

5 re tu rn ((r o o t (t) < v) and

6 a l l s m a l l e r (l e f t (t) , v) and

7 a l l s m a l l e r (r i g h t (t) , v))

8 }
9

10 a l l b i g g e r (t r e e t , v a l u e v) {
11 i f (i sEmpty (t))

12 re tu rn t rue

13 e l s e

14 re tu rn ((r o o t (t) > v) and

15 a l l b i g g e r (l e f t (t) , v) and

16 a l l b i g g e r (r i g h t (t) , v))

17 }
30

Checking whether a Binary Tree is a BST

That was a simple algorithm, but inefficient. Exercise:

1. Count the number of comparisons that occur during the

execution of this algorithm on a BST of size 7 and height 2

2. Repeat the exercise on a BST of size 15 and height 3.

3. What conclusions can you draw about the complexity of this

algorithm?

4. A perfect Binary Tree is one where every internal node has

two children and all the leaf nodes are at the same level

(which means that the leaf nodes fill that level). What is the

minimum number of comparisons, as a function of the size of

the tree, that are truly necessary for any algorithm to check

whether a perfect Binary Tree is a BST?

5. Figure out an algorithm that matches the best complexity

possible for checking that a Binary Tree is a BST. 31

Sorting using BSTs

1 p r i n t I n O r d e r (t r e e t) {
2 i f (not isEmpty (t)) {
3 p r i n t I n O r d e r (l e f t (t))

4 p r i n t (r o o t (t))

5 p r i n t I n O r d e r (r i g h t (t))

6 }
7 }
8

9 s o r t (a r r a y a o f s i z e n) {
10 t = EmptyTree

11 f o r i = 0 , 1 , . . . , n−1

12 t = i n s e r t (a [i] , t)

13 p r i n t I n O r d e r (t)

14 }

Exercise: Modify the above code to put the values back in the

array in order instead of printing them out. What is the complexity

of sorting an array this way? 32

AVL Trees

Balancedness of trees matters

1

2

3

4

5

6

7

vs.

4

2

1 3

6

5 7

Can we assume extra conditions to make sure that the height of

the tree is under control?

1

AVL Tree

The height of a node is the length of the longest path from that

node to a leaf node (compare to the height of a tree)

The balance at a node is(
The height of

the left subtree

)
−

(
The height of

the right subtree

)
Examples:

• Note that the height of an empty tree is −1

• The balance at a leaf node is (−1)− (−1) = 0.

• The balance at the root of is (−1)− 0 = −1.

• The balance of the root of is 1− 1 = 0.

2

AVL Tree

Definition: A Binary Search Tree is said to be AVL when the

balance at every node is either 1, 0 or −1.

3

Perfect Binary Tree = Maximal AVL tree of a given height

Assume that the tree is perfectly balanced, that is, the balance of

each node is 0. How many nodes does the tree have?

1 node

2 nodes

4 nodes

8 nodes

each level has

twice as many

nodes as the

previous level

If the tree has height h, then the number of nodes is

1 + 2 + 4 + 8 + · · ·+ 2h = 2h+1 − 1
4

Another way of saying that the tree is perfectly balanced is that

1. every node, except for leaf nodes, has exactly two children and

2. all leaf nodes are on the same level.

AVL-Tree: Worst Case Imbalance

Fibonacci trees = Minimal AVL trees of a given height

How many nodes does the tree have if the balance of each

(non-leaf) node is either 1 or -1?

• If the height is 1 – two options: or =⇒ size is 2

• If the height is 2:

=⇒ size is always 4

• In general, we obtain the

Fibonacci tree of height h+2

(called Th+2), from the

Fibonacci trees of height h and

h + 1 (called Th and Th+1,

respectively) as:

x
y

=⇒ the size of Th+2 = 1 + size of Th + size of Th+1 5

We see that there are two minimal AVL trees of height 1 and four minimal

AVL trees of height 2. However, those minimal trees are all the same,

except for the ordering of children. Similarly, the minimal AVL trees of

larger heights are also of the same size.

For now, we are only interested in the size of a minimal AVL tree of a

certain height. Because all minimal AVL trees of a given height have the

same size, we can pick just one representative AVL tree for every height.

The following procedure describes a construction of Fibonacci trees

T−1,T0,T1,T2,T3, . . . , where Th is the minimal AVL tree of height h

(up to ordering of children):

• T−1 is the empty tree

• T0 is the one element tree

• Th+2 is obtained by making Th and Th+1 children of the root node

(as shown in the picture on the previous slide).

For example, to construct T3 we combine T1 and T2. Because

T1 = T2 =

we obtain that T3 is the following tree

and T4 is the following tree

and so on.

Fibonacci trees and Fibonacci numbers

Denote the size of Th as |Th|:
h |Th|

-1 0

0 1

1 1 + |T−1|+ |T0| = 2

2 1 + |T0|+ |T1| = 4

3 1 + |T1|+ |T2| = 7

4 1 + |T2|+ |T3| = 12

5 1 + |T3|+ |T4| = 20
...

...

k Fk

0 0

1 1

2 F0 + F1 = 1

3 F1 + F2 = 2

4 F2 + F3 = 3

5 F3 + F4 = 5

6 F4 + F5 = 8
...

...

|Th+2| = 1 + |Th|+ |Th+1|
1 + |Th+2| = (1 + |Th|) + (1 + |Th+1|)

vs Fk+2 = Fk + Fk+1

initial values plus equation =⇒ |Th|+ 1 = Fh+3
6

Computing the bounds

If an AVL tree has height h then its size is

• ≤ the size of the perfectly balanced tree of height h, and

• ≥ the size of Fibonacci tree of height h (that is, |Th|).

Therefore (because |Th| = Fh+3 − 1)

Fh+3 − 1 ≤ the size of the tree ≤ 2h+1 − 1

Binet’s formula: Fk =

(√
5+1
2

)k
−
(√

5−1
2

)k

√
5

≈ O(1.61k)

=⇒ the size of an AVL tree is exponential in its height

=⇒ the height of an AVL tree is logarithmic in its size

=⇒ an AVL tree of size n has height O(log n)

7

If we have a tree of height h which is AVL, we know that the size of our

tree could be as small as |Th|, or as big as the size of the perfectly balanced

tree of height h. However, in general it is somewhere in between.

Let n be the size of an AVL tree, then we have that

Fh+3 − 1 ≤ n ≤ 2h+1 − 1

These are conditions on size, given that we know the height of our AVL

tree. Conversely, if we know the size and we know that the tree is AVL,

then what implications does this have for the height? Let’s express the

conditions for height in terms of n.

For example n ≤ 2h+1 − 1, gives us that

log2 n ≤ log2(2h+1 − 1) ≤ log2(2h+1) = h + 1.

In other words, height h is at least log2 n − 1.

Consequences for time complexities

For a Binary Search Tree implemented as a height-balanced tree

(e.g. AVL tree), where n = the number of nodes of the tree:

• search(x) goes through at most O(log n)-many levels

=⇒ O(log n) steps

• insert(x) :

1. We first find the leaf where to insert x =⇒ O(log n) steps,

2. then, insert it there =⇒ O(1) steps,

3. finally, on the way up, in each node we do balancing

=⇒ O(log n)-many times we do O(1) steps

=⇒ O(log n) steps in total

• delete(x) is similar to insert , it also takes O(log n) steps

8

AVL-Tree Operations

AVL tree operations

AVL Trees Invariant: The balance of every node is -1, 0, or 1.

When inserting an element to an AVL tree we allow breaking the

invariant and then, by re-balancing, we fix it again.

• AVL find: Same as BST find

• AVL insert:

• First BST insert, then check balance and potentially fix the

AVL tree

• Four different balance cases

• AVL Delete: like insert we do the deletion and then have

several balance cases

9

AVL re-balancing via Rotations

When we insert into an AVL tree, all nodes meet the balance

invariant initially.

We find where the value should go, just like in a BST tree, and

insert a new leaf there.

However, that may break the balance invariant of the AVL tree.

10

AVL re-balancing via Rotations

We will fix imbalances by a series of rotations:

x

y

A B

C

y

A x

B C

Right Rotation

Left Rotation

• A < y < B < x < C : rotation preserves this order

• x ’s right child (C) remains unchanged

• y ’s left child (A) remains unchanged
• Right rotation:

• y ’s right child (B) becomes x ’s left child

• x becomes y ’s right child

• Left rotation:
• x ’s left child (B) becomes y ’s right child

• y becomes x ’s left child 11

AVL tree insert example1

37

24

7

2

32

42

40 42

120

AVL Tree

37

24

7

2

5

32

42

40 42

120

After inserting 5,

before rebalance

We only find the imbalance in a node on return from the insert call

to its child node, and fix the lowest node with an imbalance first.
1Shaffer, Data Structures and Algorithm Analysis

12

AVL tree insert

Let x be the lowest node where an imbalance occurs, following an

insert into subtree z. This imbalance is found on returning from

the nested recursive insert call up to node x. There are 4 different

cases possible:

x
2

y

z

A B

C

D

x
2

y

A z

B C

D

x
-2

A y

z

B C

D

x
-2

A y

B z

C D

case LL case LR case RL case RR

13

AVL tree insert: Case LL

This can be fixed with a right rotation at x :

x
2

y

z

A B

C

D

y
0

z

A B

x

C D

Right Rotation(x)

• Before insertion, balance at x had to be 1

• Inserting into z caused imbalance at x , so, after insertion but

before rotation, h(y) = h(D) + 2

• After insertion, but before rebalancing,

h(y − z − . . .) = h(D) + 2 and h(y − C − . . .) = h(D) + 1

(otherwise y would be the lowest node with imbalance)

• After rotation, balance at y is 0 14

AVL tree insert: Case RR

This case is symmetric to LL and can be fixed with a left rotation

at x :

x
-2

A y

B z

C D

y
0

x

A B

z

C D

Left Rotation(x)

• Before insertion, balance at x had to be −1

• After rotation, balance at y is 0

15

AVL tree insert: Case LR

This case raises a probem: the necessary right rotation at x alone

does not fix the imbalance:

x
2

y

A z

B C

D

y
-2

A x

z

B C

D

Right Rotation(x)

STILL UNBALANCED . . . just the opposite way!

Actually turns it into the RL case

Solution:

• Do a left rotation at y first

• Then do a right rotation at x .
16

AVL tree insert: Solution to Case LR

x
2

y

A z

B C

D

x
2

z

y

A B

C

D

Left Rotation(y)

This results in a simple LL case which can be fixed by a right

rotation at x :

x
2

z

y

A B

C

D

z
0

y

A B

x

C D

Right Rotation(x)

17

AVL tree insert: Case RL

This case is symmetric to the LR case

x
-2

A y

z

B C

D

x
-2

A z

B y

C D

Right Rotation(y)

This results in a simple RR case which can be fixed by a left

rotation at x :

x
-2

A z

B y

C D

z
0

x

A B

y

C D

Left Rotation(x)

18

AVL tree insert example [Shaffer]

37

24

7

2

5

32

42

40 42

120

37

24

7

5

2

32

42

40 42

120

Left Rotation(node 5)

37

24

7

5

2

32

42

40 42

120

37

24

5

2 7

32

42

40 42

120

Right Rotation(node 7)

19

AVL tree deletion

To delete from an AVL tree, the general approach is to modify the

BST delete algorithm

(c.f. dsa-slides-04-03-binary-search-trees.pdf):

• Delete the node from the tree using the BST algorithm

• On returning up the tree, rebalance as necessary just as for

AVL Tree insert

20

Further reading on AVL trees

• https://www.programiz.com/dsa/avl-tree has a very

nice explanation, explains deletion as well and has full code

implementations.

• https://www.tutorialspoint.com/data_structures_

algorithms/avl_tree_algorithm.htm also has some nice

explanations.

• https://www.cs.usfca.edu/~galles/visualization/

AVLtree.html allows you to insert and delete values in an

AVL tree and animates the operations.

21

https://www.programiz.com/dsa/avl-tree
https://www.tutorialspoint.com/data_structures_algorithms/avl_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/avl_tree_algorithm.htm
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

B-Trees and B+Trees

B-Tree

A B-tree of order m is a type of n-ary trees with some particularly nice

properties:

• Every node has at most m children

• Every non-leaf node, except the root, has at least m/2 children

• The root node, if it is not a leaf node, has at least 2 children

• A non-leaf node with c children, contains c − 1 search key values,

which act as separators or discriminators, to guide seaches down

appropriate sub-trees

• All leaf nodes appear in the same level

• B-Trees are always height balanced

• Update and search is O(log n)

1

B-Tree

In fact, different authors define the B-Tree in slightly different ways.

This does not really matter, because no-one really uses basic B-Trees:

• When used as an in-memory data structure, they have no significant

advantage over AVL-trees or other height balanced binary trees like

2-3 trees or red-black trees, and are a bit more complex to

implement.

Instead, a variant of the B-Tree called a B+Tree is the main-stay of

databases and the most comment external data structure in use today.

We will not consider the basic B-Tree further but concentrate on the

B+Tree.

2

External Data Structures

External Data Structures

An external data structure is one which is stored on external or secondary

memory (i.e. disks) rather than in internal memory (RAM). This means

that the data structure can:

• Persist beyond the end of the program execution without the

programmer having to explicitly save or load the structure to/from

disk

• Grow to sizes larger than can fit in internal memory, often hugely

larger, being limited only by the amount of secondary storage

available.

• Be accessed and updated by multiple different programs at the same

time so long as suitable coordination protocols are observed by the

different programs.

3

Properties of Secondary Storage

• Disks store data in block of sizes configured by the operating

system, usually 4KBytes but can be up to 64KBytes

• The disk can only transfer whole blocks at a time: to write a single

byte to disk, the operating system would have to

1. read the block, which would contain the byte, into memory

2. replace the byte in the memory copy of the disk block

3. write the memory copy of the block back out to the disk

• In spinning hard disks, the time to read (or write) a block includes

1. time to move the disk head to the correct track (approx 6ms),

2. time to wait for the block to spin around to the disk head (approx

4ms) and

3. time for the disk to spin further until all the block has passed under

the disk head.

4. reading or writing consecutive blocks is much faster that reading a

random sequence of disk blocks

4

B+Trees

Glossary for B+Trees

There are a few terms we use in B+Trees

• Data Record: an element of data information to be managed by

the B+Tree, e.g. a student record with ID number, name, email

address etc.

• Key value: the value by which we identify the record, e.g. the ID

number or the student name.

• Discriminator: a value used to decide which path to take down the

tree in searching for a record. Almost always the key value of some

record, but, in principle, it doesn’t have to be.

• Disk Address: the offset from the start of the disk file to a

particular block in the file. A file read/write can be executed by

rquesting the operating system to “seek” to this address and

read/write a block from/to the file. Think of a disk address as a

pointer to disk memory.

5

Order of a B+Tree

B+Trees nodes are designed to fit in disk blocks so that reading or

writing a node corresponds to reading or writing a single disk block (or a

sequence of consecutive disk blocks)

Most descriptions of B+Trees start with the order of a B+Tree, which is

variously defined as the minimum or maximum number of children or the

minimum or maximum number of keys in a non-root internal node of the

tree (these can be 4 different numbers for the same tree!)

However, in real-world B+Tree implementations, first of all the key

values are often variable length strings, and second the the limiting factor

on the number of children in each node is not some arbitrary order

specification, but instead is decided by how many keys and disk addresses

can fit in a single disk block.

• Note that, since keys can be of variable length, the maximum

number of children of an internal node of the tree is not a fixed

number.
6

B+Trees

There are 2 variants of B+Trees in common use which we can call

Record-Embedded B+Trees1 and Index B+Trees1

• Record-Embedded B+Trees store the data records in the leaf

nodes of the B+Tree. This is a suitable data structure when

• you only need to find records by one search key, e.g. you look up

student records by student ID numbers, but not by student name.

• you want the B+Tree to do all management of the data records, e.g.

if you delete the B+Tree, you delete the student records.

• Index B+Trees store only key-values and disk addresses in the leaf

nodes, which identifies the disk block in the separate file of data

records where the record with the corresponding key values reside:

• The data records are kept in blocks separate from the B+Tree

blocks, so dropping the B+Tree does not delete the data records

• Multiple B+Tree indexes can be created on a collection of data

records, e.g. one indexing on student IDs, another on student names.

1Not standard terminology, but there is none for these variants

7

Record Embedded B+Trees

Record Embedded B+Tree

A disk address

24 A key value

24* A full record with given key value

13 17 24

2* 3* 5* 14* 16* 19* 22* 24* 29*

A Record Embedded B+Tree of height 1:

Leaf level:

17

4 13 24

2* 3* 4* 5* 14* 16* 19* 22* 24* 29*

After insertion of record 4:

Leaf level:

8

Search Operations

• Search: Start at the root and follows the path down indicated by

the discriminator values: go to the node identified by the disk

address whose left discriminator is less than the search key and

whose right discriminator is greater than or equal to the search key.

• Range: Search for the record with a key at one end of the range,

then iterate, using the next/prev disk addresses in the leaf level, over

all records in the range.

9

Insert Operation

• Search with the key of the record to be inserted to find the location

to insert the record. If there is space there, insert the record and

done.

• If there is not enough space there, split the block in two so that

approximately half the number of records go to the left, half to the

right (the new record is added to the appropriate half).

• Post (i.e. insert to the level above) the key value of the lowest

record in the right page as a discriminator to the level above

• If there is room in the block above for this insertion then done.

• Otherwise, continue splitting and posting until either the insertion is

complete or the root node of the tree is split, in which case there is

guaranteed to be sufficient room because the resulting new root

node will only have 1 key and two disk addresses after the split.

10

Insert Operation Properties

• The tree grows in height ONLY when the root node splits, hence

every path from the root to any leaf is of the same height at all

times: i.e. the tree is height balanced

• No node is ever less than (approximately) half full except for the

root node

• Deletion works as an inverse of insertion: whenever a record is

removed from a leaf node, if the node is becomes less than half full,

then the records of it and its neighbouring node is distributed

between them. If both the nodes become less than half full, then the

nodes are merged and an entry removed from the level above. This

can cascade up the tree until, possibly, the two children of the root

node are merged and become the new root and the tree reduces in

height by 1.

11

Bulk Loading

Creating a new B+Tree index on a set of records can be done by

iterating over the records and inserting them into the B+Tree. However,

this is inefficient because of the many searches down the tree to find the

location to insert the records.

Instead bulk loading is much more efficient:

• Sort the records and insert them into a leaf level set of records,

connecting the leaf blocks as you go.

• As you construct leaf blocks, construct a parent node by inserting

leaf disk addresses and discriminators into the parent node.

• When a parent node becomes full, split it as usual for insert

This results in all the splits happening along the rightmost path in the

tree, rather than randomly distributed across many different paths, which

in turn means that, even with very large trees that do not fit in memory,

one can hold the rightmost path in memory and only write blocks when

they become full, resulting in much greater performance.
12

Index B+Trees

Index B+Tree

There are two sub-variants of the Index B+ depending on the sort order

(if any) of the data records in the record file:

• Secondary Index B+Tree: Here the records are NOT necessarily

sorted in the data file of blocks. Thus each entry in the leaf nodes of

the tree contains a pair consisting of a key value and a disk address

which identifies the disk block where the record with that key value

can be found. Leaf nodes also have forward and reverse pointers.

• Primary Index B+Tree: Here the records are kept sorted by the

key value used in the B+Tree in the data file containing the blocks

of records. Thus the leaf nodes of the B+tree only need to store

discriminator values to separate the data file blocks and look much

like internal B+Tree nodes except that they also have forward and

reverse pointers.

There can be only one primary key index on a file of records as the

records can be in only one order, but there can be multiple secondary

indexes on the same file. 13

Primary Index B+Tree

13 17 24

2* 3* 5* 14* 16* 19* 22* 24* 29*

A Primary Index B+Tree of height 0 (root = leaf level):

Record file:

17

4 13 24

2* 3* 4* 5* 14* 16* 19* 22* 24* 29*

After insertion of record 4:

Leaf level:

Record file:

Note that the leaf level of the Primary B+Tree contains discriminators to

separate blocks of records in the record file

14

Secondary Index B+Tree

13 17 24

17* 24* 13*

A Secondary Index B+Tree of height 0 (root = leaf level):

Record file:

17

4 13 17 24

17* 24* 4* 13*

After insertion of record 4:

Leaf level:

Record file:

Note that every value in the record file has an individual entry in the leaf

level of the secondary B+Tree, hence we see key values in the leaf level

that may occur higher in the tree, e.g. 17 in the above case.

15

B+Tree Complexity

B+Tree Complexity

The B+Tree is an n-ary tree which is height balanced, hence search is

going to be O(log n)

In practice, search will take logmn reads of pages where the fanout ratio

of the tree is m (The fanout ratio is the number of children in each

node). With a 4KByte block, a 4 byte integer key, a 4 byte disk address

size, with every block being half full, and even assuming a little space is

in each block is taken with extra administrative information, that gives a

fanout ratio of at least 250.

• Tree of height 1: 250 records

• Tree of height 2: 62,500 records

• Tree of height 3: 15,625,000 records

• Tree of height 4: 3,906,250,000 records

16

B+Tree Complexity

This is actually an underestimate because the nodes will, on average have

more entries in them and the block sizes used will usually be larger than

4Kbytes

Thus can find a record from a collection of approx 4 Trillion in 4 disk

reads.

In practice, we would normally cache all except the bottom two levels in

memory, so really only takes 2 disk reads.

Note that the cost of the disk read is so much larger than the cost of the

processing of in-memory aspects of the data structure that we can ignore

in-memory processing costs.

Insertion has the same order of complexity as search.

17

Priority Queues

Priority Queue

A Priority Queue is an Abstract Data Type that maintains a

collection of items which has an associated priority value and can

get (and remove) the item with highest priority efficiently. New

items with arbitrary priorities can be added at any time.

There are a number of obvious implementation strategies we could

use:

• Unsorted Array: Inserting an item is O(1), get is O(n)

• Sorted Array: Insert is O(n), get is O(1)

• AVL Tree: Insert and get are both O(log n)

We can do better than that.

1

Priority Queue applications

In general, priority queues are useful whenever we repeatedly need

the maximum of a changing collection.

For example, if do a search on the web, the underlying search

algorithm will find potential matches, each with a score that

estimates how good a match it is. It may put those matches into a

priority queue, and then extract the 10 best matches from the

queue. In the background, further matches might be searched for

and added to the queue. When the go to the next page of results,

then the next 10 best matches are extracted and displayed.

Similar examples can be found in finding the best next move in a

computer game, online flight search websites, hotel booking

systems, comparative pricing websites

2

Complete Binary Tree

Our first implementation of Priority Queues will use a type of

Complete Binary Tree, called a Binary Heap Tree, which, in

turn, we will implement using an array.

Definition
A binary tree is complete if every level, except possibly the last, is

completely filled, and all the leaves on the last level are placed as

far to the left as possible.

This simply defines, for a binary tree with a given number of

nodes, the tidiest, most balanced and compact form possible

Complete:

Not Complete:

3

Array Implementation of Complete Binary Trees

We can store Binary Trees in a simple array structure:

a

b

d

h i

e

j k

c

f

l m

g

n o

a

b c

d e f g

h i j k l m n o

a b c d e f g h i j k l m n o

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t:

Root: t [1]

Children of t [i]: t[2∗ i] and t[2∗ i+1]

Parent of t [i]: t [i div 2]

Level of t [i]: blog2 ic

4

If the binary tree is not complete, then:

• this is a wasteful implementation strategy because space is still

reserved for the missing nodes

• when a node is missing, the array cell needs to be marked to

indicate that it is not part of the tree

– use an invalid value for this application (null, -1, etc.), or

– use a separate data structure (e.g. a bit array — 1 bit per cell

of the binary tree array) to indicate whether the corresponding

cell contains a real value

If the binary tree is always complete, then:

• A single integer to record number of nodes in the tree is sufficient

to identify the end of the tree

• You do not need to mark missing nodes because there are none

before the end of the tree

Binary Heap Trees

Binary Heap Trees

Definition
A binary heap tree is a complete binary tree which is either empty

or satisfies the following conditions:

1. The priority of the root is greater than or equal to that of its

children.

2. The left and right subtrees of the root are heap trees.

Note that, unlike in Binary Search Trees, there is no restriction on

the relationship between the left and right children of any node:

Binary Heap Trees do not keep the value stored in left child node

less than that stored in the right child node.

Thus we have no need to keep the Binary Heap Tree sorted, which

makes working with the tree somewhat easier.

5

Binary Heap Tree Examples

Valid:
90

80

75

40 30

60

70

50 55

90

80

75 60

70

90

80

75 60

85

50

Invalid:
90

80

75 60

70

85

90

80 70

50 55

90

80

75

70

50 55

6

Priority Heap: Java-like Pseudo-Code

WARNING: Necessary error checking has been omitted!

1 p u b l i c c l a s s P r i o r i t yHe ap {
2 p r i v a t e i n t MAX = 100 ;

3 p r i v a t e i n t heap [MAX+1] ;

4 p r i v a t e i n t n = 0 ;

5

6 p u b l i c i n t v a l u e (i n t i){
7 i f (i < 1 or i > n)

8 throw IndexOutOfBoundsExcept ion ;

9 r e t u r n heap [i] ;

10 }
11 p u b l i c boolean i sRoo t (i n t i) { r e t u r n i == 1 ; }
12 p u b l i c i n t l e v e l (i n t i) { r e t u r n l o g (i) ; }
13 p u b l i c i n t pa r en t (i n t i) { r e t u r n i / 2 ; }
14 p u b l i c i n t l e f t (i n t i) { r e t u r n 2 ∗ i ; }
15 p u b l i c i n t r i g h t (i n t i) { r e t u r n 2 ∗ i + 1 ; }
16 // More methods to be added he r e

17 } 7

Priority Heap: Java-like Pseudo-Code

1 p u b l i c boolean i sEmpty () {
2 r e t u r n n == 0 ;

3 }
4

5 p u b l i c i n t r o o t () {
6 i f (heapEmpty ())

7 throw HeapEmptyException ;

8 e l s e r e t u r n heap [1]

9 }
10

11 p u b l i c i n t l a s t L e a f ()) {
12 i f (heapEmpty ())

13 throw HeapEmptyException ;

14 e l s e r e t u r n heap [n]

15 }

8

Binary Heap Tree Insertion

Insertion

Idea: Insert the value at the end of the last level and then keep

bubbling it up as long as it is larger than its parent.

10

5

4

4 1

3

1 2

7

6

0 5

4

10

5

4

4 1

3

1 2

6

0 5

Inserting 8:

As we bubble up, when we swap the value of a node i with that of

its parent, we don’t have to compare i with its sibling, because if

the value of i is greater than that of its parent, then it must be

greater than that of its sibling because of the Binary Heap Tree

property. 9

Insertion

Idea: Insert the value at the end of the last level and then keep

bubbling it up as long as it is larger than its parent.

10

5

4

4 1

3

1 2

7

6

0 5

4

10

5

4

4 1

3

1 2

6

0 5

Inserting 8:

7

4

8

As we bubble up, when we swap the value of a node i with that of

its parent, we don’t have to compare i with its sibling, because if

the value of i is greater than that of its parent, then it must be

greater than that of its sibling because of the Binary Heap Tree

property. 9

Insertion

Idea: Insert the value at the end of the last level and then keep

bubbling it up as long as it is larger than its parent.

10

5

4

4 1

3

1 2

7

6

0 5

4

10

5

4

4 1

3

1 2

6

0 5

Inserting 8:

7

4

8

swap?

As we bubble up, when we swap the value of a node i with that of

its parent, we don’t have to compare i with its sibling, because if

the value of i is greater than that of its parent, then it must be

greater than that of its sibling because of the Binary Heap Tree

property. 9

Insertion

Idea: Insert the value at the end of the last level and then keep

bubbling it up as long as it is larger than its parent.

10

5

4

4 1

3

1 2

7

6

0 5

4

10

5

4

4 1

3

1 2

6

0 5

Inserting 8:

7

8

4

As we bubble up, when we swap the value of a node i with that of

its parent, we don’t have to compare i with its sibling, because if

the value of i is greater than that of its parent, then it must be

greater than that of its sibling because of the Binary Heap Tree

property. 9

Insertion

Idea: Insert the value at the end of the last level and then keep

bubbling it up as long as it is larger than its parent.

10

5

4

4 1

3

1 2

7

6

0 5

4

10

5

4

4 1

3

1 2

6

0 5

Inserting 8:

7

8

4

swap?

As we bubble up, when we swap the value of a node i with that of

its parent, we don’t have to compare i with its sibling, because if

the value of i is greater than that of its parent, then it must be

greater than that of its sibling because of the Binary Heap Tree

property. 9

Insertion

Idea: Insert the value at the end of the last level and then keep

bubbling it up as long as it is larger than its parent.

10

5

4

4 1

3

1 2

7

6

0 5

4

10

5

4

4 1

3

1 2

6

0 5

Inserting 8:

8

7

4

swap?

As we bubble up, when we swap the value of a node i with that of

its parent, we don’t have to compare i with its sibling, because if

the value of i is greater than that of its parent, then it must be

greater than that of its sibling because of the Binary Heap Tree

property. 9

Insertion

Idea: Insert the value at the end of the last level and then keep

bubbling it up as long as it is larger than its parent.

10

5

4

4 1

3

1 2

7

6

0 5

4

10

5

4

4 1

3

1 2

6

0 5

Inserting 8:

8

7

4

DONE!

As we bubble up, when we swap the value of a node i with that of

its parent, we don’t have to compare i with its sibling, because if

the value of i is greater than that of its parent, then it must be

greater than that of its sibling because of the Binary Heap Tree

property. 9

Insert (pseudocode)

1 p u b l i c vo id i n s e r t (i n t p) {
2 i f (n == MAXSIZE)

3 throw HeapFu l lExcep t i on ;

4 n = n + 1 ;

5 heap [n] = p ; // i n s e r t the new va l u e as the l a s t

6 // node o f the l a s t l e v e l

7 bubbleUp (n) ; // and bubb le i t up

8 }

1 p r i v a t e vo id bubbleUp (i n t i) {
2 i f (i == 1) r e t u r n ; // i i s the r oo t

3

4 i f (heap [i] > heap [pa r en t (i)]) {
5 swap heap [i] and heap [pa r en t (i)] ;

6 bubbleUp (pa r en t (i)) ;

7 }
8 }

10

Binary Heap Tree Deletion

Delete Root

Idea:

1. Remove the last node and use it to replace the root

2. Then bubble down: keep swapping it with the higher priority

child as long as any of its children has a higher priority.

10

5

4

4 1

3

1 2

7

6

0 5

4

5

4

4 1

3

1 2 0

4

10

5

11

Delete Root

Idea:

1. Remove the last node and use it to replace the root

2. Then bubble down: keep swapping it with the higher priority

child as long as any of its children has a higher priority.

10

5

4

4 1

3

1 2

7

6

0 5

4

5

4

4 1

3

1 2 0

4

5

7

6

11

Delete Root

Idea:

1. Remove the last node and use it to replace the root

2. Then bubble down: keep swapping it with the higher priority

child as long as any of its children has a higher priority.

10

5

4

4 1

3

1 2

7

6

0 5

4

5

4

4 1

3

1 2 0

4

5

7

6

11

Delete Root

Idea:

1. Remove the last node and use it to replace the root

2. Then bubble down: keep swapping it with the higher priority

child as long as any of its children has a higher priority.

10

5

4

4 1

3

1 2

7

6

0 5

4

5

4

4 1

3

1 2 0

4

7

5

6

11

Delete Root

Idea:

1. Remove the last node and use it to replace the root

2. Then bubble down: keep swapping it with the higher priority

child as long as any of its children has a higher priority.

10

5

4

4 1

3

1 2

7

6

0 5

4

5

4

4 1

3

1 2 0

4

7

5

6

11

Delete Root

Idea:

1. Remove the last node and use it to replace the root

2. Then bubble down: keep swapping it with the higher priority

child as long as any of its children has a higher priority.

10

5

4

4 1

3

1 2

7

6

0 5

4

5

4

4 1

3

1 2 0

4

7

6

5

11

Delete Root

Idea:

1. Remove the last node and use it to replace the root

2. Then bubble down: keep swapping it with the higher priority

child as long as any of its children has a higher priority.

10

5

4

4 1

3

1 2

7

6

0 5

4

5

4

4 1

3

1 2 0

4

7

6

5

DONE!

11

Delete Root (pseudocode)

1 p u b l i c vo id de l e t eRoo t () {
2 i f (n < 1)

3 throw EmptyHeapException ;

4

5 heap [1] = heap [n] ;

6 n = n−1;
7 bubbleDown (1) ;

8 }

12

bubbleDown

The bubbleDown method needs to deal with 5 cases, depending

on the current node that is being bubbled down:

1. it is a leaf node: nothing to do, bubbledown is complete

2. it has a left child, but no right child: if left child is greater

than it, swap left child with current and bubbleDown is

complete (no right child and this is a complete tree means the

left child cannot have any children)

3. it has two children, the left child is greater of the two and is

greater than the current node: swap left child and current and

continue recursively bubbling down the left child

4. as the previous case but the right child is the greater:

continue as above but on the right child

5. it has two children and neither is greater than the current

node: nothing to do, bubbledown is complete 13

bubbleDown (pseudocode)

1 p r i v a t e v o i d bubbleDown (i n t i) {
2 i f (l e f t (i) > n) // no c h i l d r e n

3 r e t u r n ;

4 e l s e i f (r i g h t (i) > n) // on l y l e f t c h i l d

5 { i f (heap [i] < heap [l e f t (i)])

6 swap heap [i] and heap [l e f t (i)]

7 }
8 // e l s e two c h i l d r e n

9 e l s e i f (heap [l e f t (i)] > heap [r i g h t (i)])

10 { // l e f t c h i l d has h i g h e r p r i o r i t y than r i g h t

11 i f (heap [i] < heap [l e f t (i)])

12 { swap heap [i] and heap [l e f t (i)]

13 bubbleDown (l e f t (i))

14 }
15 }
16 e l s e // r i g h t c h i l d has h i g h e r p r i o r i t y than l e f t

17 i f (heap [i] < heap [r i g h t (i)])

18 { swap heap [i] and heap [r i g h t (i)]

19 bubbleDown (r i g h t (i))

20 }
21 }
22 }

14

Delete

Deleting an arbitrary node means the node might be anywhere in

the tree.

1. Remove the last node and use it to replace the node to be

deleted

2. This node may be smaller than its children or larger than its

parent, so bubble up or bubble down as necessary

10

4

2

0 1

3

1 2

7

6

0 5

42

7

5
15

Delete (pseudocode)

1 p u b l i c vo id d e l e t e (i n t i) {
2 i f (n < 1)

3 throw EmptyHeapException ;

4 i f (i < 1 or i > n)

5 throw IndexOutOfBoundsExcept ion ;

6

7 heap [i] = heap [n] ;

8 n = n−1;
9 bubbleUp (i)

10 bubbleDown (i) ;

11 }

Note that only one of bubbleUp or bubbleDown is necessary,

but since the one which turns out to be unnecessary will not do

anything, it is safe to call both, one after the other, rather than

test to check which one should be invoked.

16

Update

Update means modifying the priority of a element in the tree. This

works like delete except that we set the priority of the target

node from a parameter, rather than from the last element in the

tree, and we don’t reduce the size of the tree.

1 p u b l i c vo id update (i n t i , i n t p r i o r i t y) {
2 i f (n < 1)

3 throw EmptyHeapException ;

4 i f (i < 1 or i > n)

5 throw IndexOutOfBoundsExcept ion ;

6

7 heap [i] = p r i o r i t y ;

8 bubbleUp (i)

9 bubbleDown (i) ;

10 }

17

Heapify and Merge

Building a Binary Heap Tree

Inserting a set of n items into an empty Binary Heap Tree is n

inserts of complexity O(log n) giving a total complexity of

O(n log n).

There is a more efficient way: If we have the items in an array in

random order (starting at index position 1), then we already have

them in Complete Binary Tree form, but not in Binary Heap Tree

form. At this point, all the leaf nodes satisfy the heap tree

properties, but the internal nodes do not.

We can therefore iterate over the internal nodes, starting with the

last internal node and working up to the first, calling bubbleDown

on each in turn. Each time we do, we ensure that the subtree

based on that node becomes a valid Binary Heap Tree, so that in

the end, the whole tree is a valid Binary Heap Tree.
18

Building a Binary Heap Tree

The last node is node n. The parent of the last node is node n/2

and that must be the last internal node in the tree, because node

n/2 + 1 would have left child 2 ∗ (n/2 + 1) = n + 2, which doesn’t

exist, so node n/2 + 1 must not be an internal node.

1 p u b l i c vo id h e a p i f y () {
2 f o r (i n t i = n/2 ; i > 0 ; i−−)

3 bubbleDown (i)

4 }

5

8

9

6 2

1

3

4 7

5 8 3 9 1 4 7 6 2

0 1 2 3 4 5 6 7 8 9

heap:

19

Complexity of Heapify

Where h is the height of the heap tree, the root node needs to

swap with h-many nodes, the nodes on level 1 swap with

(h − 1)-many nodes and so on. In the worst case, the total

number of swaps is

C (h) = h + 2(h − 1) + 4(h − 2) + . . . + 2h−1(h − (h − 1))

=
h∑

i=0

2i (h − i) =
2h

2h

h∑
i=0

2i (h − i) = 2h
h∑

i=0

h − i

2h−i

= 2h
h∑

j=0

j

2j
≤ 2h

∞∑
j=0

j

2j

and since
∑∞

j=0
j
2j

= 2 we obtain that C (h) = 2h×2 = 2h+1.

Hence the complexity of heapify is O(2h+1) = O(2h) = O(n)

20

Merging Binary Heap Trees

Three major approaches to merge two BHTs of similar size n:

1. Insert each item of one tree into the other
• n inserts, hence O(n log n)

2. Remove the last elements of the bigger tree and insert them
into the smaller until the tree made from a dummy root node
and the smaller and bigger trees as its left and right child
respectively, is complete. Then use the standard delete
method to delete the dummy root node1.
• On average, the smaller tree is half the size of the larger,

about a quarter of the leaf nodes of the large must be inserted

into the smaller to make them approx equal in size, so O(n)

inserts, hence complexity is also O(n log n). However, this will

be about 1
4 of the number of operations of the previous

method so faster.

3. Concatenate the array forms and call heapify

• O(n)
1Note: more complicated with array forms than with pointer based trees 21

Binomial and Fibonacci Heaps

Binomial Trees

Definition
A binomial tree is defined recursively as follows:

• A binomial tree of order 0 is a single node.

• A binomial tree of order k has a root node with children that

are roots of binomial trees of orders k − 1, k − 2, . . . , 2, 1, 0
0 1 2 3 4

Note:

• A Binomial Tree of order k has exactly 2k nodes

• A Binomial Tree of order k can be constructed from 2

Binomial Trees of order k − 1 by attaching one of them as a

new leftmost child of the root of the other: this is the basis of

the efficient merge operation for Binomial Heaps. 22

Binomial Heaps

A Binomial Heap is a list of Binomial Trees with the properties:

• There can be only zero or one Binomial Trees of each order

• Each Binomial Tree satisfies the priority ordering property:

each node has priority less than or equal to its parent.

A typical implementation would use a doubly linked list of pointers

to the root of each component Binomial Tree kept in order of

Binomial Tree orders.

23

Binomial Heap Example, Find Max

70 50

30

90

65

20

5

10

25

15

80

head:

Note that there is no ordering between the keys in the different

component Binomial Trees

Finding the node with highest priority is a linear search through the

trees comparing the root values. Since, in the worst case, the

number of nodes double in each consecutive tree, there will be

log n trees required to store n values, so this is O(log n)
24

Binomial Heap Merge

The key operation is merge, which merges two binomial heaps into

one. Inserting a new value into a binomial tree works by merging a

simple one node heap with the new value into the existing heap.

Note that if we have two binomial trees of the same order k , we

can merge them into a single binomial tree of order k + 1 by adding

one of the trees as the leftmost child of the root of the other:

65

20

5

10

+ 90

25

15

80

= 90

65

20

5

10

25

15

80

Binomial Heap Merge works in a way that is analogous to

elementary addition of integers: Think of each Binomial Tree as a

single binary digit in the addition. 25

Binomial Heap Merge

• “Adding” two trees of the same order k produces a single tree

of order k + 1, and is treated as a “carry out”

• Iterate through the tree orders 0, 1, 2, For each order, set

the resulting tree and carry out to be the merge of any carry

in and the trees of that order in the two heaps
• For any particular order k , there may be between 0 and 3

input trees to be merged, with the following effect on the
result heap:

0: no output tree of order k and there is no carry out.

1: the output tree of order k is the input tree and there is no

carry out.

2: no output tree of order k and the carry out (of order k + 1) is

the merge of the two input trees

3: the output tree of order k is one of the input trees, and the

carry out (of order k + 1) is the merge of the other two input

trees 26

Binomial Heap Merge Example

85 60

40

H1: +

70 50

30

90

65

20

5

10

25

15

80

H2:

Order Carry-in H1 H2 Out Carry-out

0 85 70 85

70

27

Binomial Heap Merge Example

85 60

40

H1: +

70 50

30

90

65

20

5

10

25

15

80

H2:

Order Carry-in H1 H2 Out Carry-out

0 85 70 85

70

1 85

70

60

40

50

30

85

70

60

50

30

40

27

Binomial Heap Merge Example

85 60

40

H1: +

70 50

30

90

65

20

5

10

25

15

80

H2:

Order Carry-in H1 H2 Out Carry-out

1 85

70

60

40

50

30

85

70

60

50

30

40

2 60

50

30

40

60

50

30

40

27

Binomial Heap Merge Example

85 60

40

H1: +

70 50

30

90

65

20

5

10

25

15

80

H2:

Order Carry-in H1 H2 Out Carry-out

2 60

50

30

40

60

50

30

40

3 90

65

20

5

10

25

15

80

90

65

20

5

10

25

15

80

27

Binomial Heap Merge Example: Final Result

85

70

60

50

30

40

90

65

20

5

10

25

15

80

H1 + H2:

28

Complexity

Merging two Binomial Trees is O(1)

Merging two Binomial Heaps requires, in general, the merging of

O(log n) Binomial Trees, hence O(log n)

Inserting merges two Binomial Heaps: one with a single Binomial

Tree of order 0. There is a probability of

• 1
2 that the other heap has a Binomial tree of order 0 and so

requires merging of order 0 trees and a carry-out

•
(
1
2

)2
that the other heap has a Binomial tree of order 1 and

requires a merge

•
(
1
2

)3
etc.

Full average (amortised) cost of insertion is

O(1)×
∞∑
i=1

(
1

2

)i

= O(1)
29

Binomial Heap: Other operations

There is no fast way to build a Binomial Heap from a collection of

n key values, so simply insert n times: O(n)

To change the priority of a node in a Binomial Heap, we can use a

bubble up/down process similar to that of Binary Heaps: O(log n)

Deleting the highest priority node requires finding it: a linear

search through the roots of the Binomial trees: O(log n), and

removing the root node of that tree and merging the subtrees back

into the binomial heap: O(log n). Total cost:

O(log n) + O(log n) = O(log n)

Deleting non-root nodes can be done by setting the node’s priority

to ∞, bubbling it up to the root and then deleting it as in the

previous case: O(log n)
30

Fibonacci Heaps

Fibonacci Heaps are similar to Binomial Heaps in that they are

also a collection of trees, but with different constraints on their

structure. They are considerably more complex than Binomial

Heaps, and make use of lazy modifications to keep themselves

organised.

Their advantage over Binomial Heaps are that they achieve

complexity of O(1) for merge, and updating the priority of a node

has amortised complexity of O(1)

31

Priority Queue Complexity

Comparison of priority queues implementations

Operation Binary Heaps Binomial Heaps Fibonacci Heaps

Insert O(log n) O(1)? O(1)

Delete O(log n) O(log n) O(log n)?

Update O(log n) O(log n) O(1)?

Merge O(n) O(log n) O(1)

Heapify O(n) O(n) O(n)

Where ? means that it is the amortized complexity.

32

Sorting

Sorting

Given a set of records (or objects), we can sort them by many

different criteria. For example, a set of student/mark records that

contain marks for different students in different modules could be

sorted:

• in decreasing order by mark

• in alphabetic order of their surname first, then by their

firstname, if there are students with the same surname

• in increasing order of module name, then by decreasing order

of mark

Sort algorithms mostly work on the basis of a comparison function

that is supplied to them that defines the order required between

any two objects or records.

In some special cases, the nature of the data means that we can

sort without using a comparison function.
1

Comparing objects in Java

Java provides two interfaces to implement comparison functions:

Comparable : A Comparable object can compare itself with

another object using its compareTo(...) method. There can

only be one such method for any class, so this should implement

the default ordering of objects of this type. x.compareTo(y)

should return a negative int, 0, or a positive int if x is less than,

equal to, or greater than y respectively.

Comparator : A Comparator object can be used to compare

two objects of some type using the compare(...) method. This

does not work on the current object but rather both objects to be

compared are passed as arguments. You can have many different

comparison functions implemented this way. compare(x, y)

should return a negative int, 0, or a positive int if x is less than,

equal to, or greater than y respectively. 2

Comparison-based Sorting Strategies

There are a number of basic strategies for comparison-based

sorting, and different sorting algorithms based on each strategy:

• Enumeration: For each item, count the number of items less

than it, say N, then put the current item at position N + 1.

• Exchange: If two items are found to be out of order,

exchange them. Repeat until all items are in order.

• Selection: Find the smallest item, put it in position 1, find

the smallest remaining item, put it in position 2, . . .

• Insertion: Take the items one at a time and insert into an

initially empty data structure such that the data structure

continues to be sorted at each stage.

• Divide and conquer: Recursively split the problem into

smaller sub-problems till you just have single items that are

trivial to sort. Then put the sorted ‘parts’ back together in a

way that preserves the sorting. 3

Minimum number of Comparisons

For comparison-based sorting, the minimum number of

comparisons necessary to sort n items gives us a lower bound on

the complexity of any comparison based sorting algorithm.

Consider an array a of 3 elements: a0, a1, a2. We can make a

decision tree to figure out which order the items should be in (note:

no comparisons are repeated on any path from the root to a leaf):

a0 6 a1

a1 6 a2

a0, a1, a2

true

a0 6 a2

a0, a2, a1

true

a2, a0, a1

false

false

true

a0 6 a2

a1, a0, a2

true

a1 6 a2

a1, a2, a0

true

a2, a1, a0

false

false

false

4

Minimum number of Comparisons

• This decision tree is a binary tree where there is one leaf for

every possible ordering of the items

• The average number of comparisons that are necessary to

sort the items will be the average path length from the root to

a leaf of the decision tree.

• The worst case number of comparisons that are necessary to

sort the items will be the height of the decision tree.

• Given n items, there are n ways to choose the first item, n− 1

ways to choose the second, n − 2 ways to choose the third,

etc. so there are n(n − 1)(n − 2) . . . 3 · 2 · 1 = n! different

possible orderings of n items

• Thus the minimum number of comparisons necessary to sort n

items is the height of a binary tree with n! leaves

5

Minimum number of Comparisons

A binary tree of height h has the most number of leaves if all the

leaves are on the bottom-most level, thus it has at most 2h leaves.

Hence we need to find h such that

2h > n!

=⇒ log2 2h > log2 n!

=⇒ h > log2 n!

But log2 n! = Θ(n log n), thus we need at least n log n comparisons

to complete a comparison based sort in general.1

1There are many ways to prove this but the easiest involves showing that

(n
2

)
n
2 6 n! 6 nn and taking the log of all terms

6

Stability in Sorting

A stable sorting algorithm does not change the order of items in

the input if they have the same sort key.

Thus if we have a collection of student records which is already in

order by the students’ first names, and we use a stable sorting

algorithm to sort it by students’ surnames, then all students with

the same surname will still be sorted by their firstnames.

Using stable sorting algorithms in this way, we can “pipeline”

sorting steps to construct a particular order in stages.

In particular, a stable sorting algorithm is often faster when applied

to an already sorted, or nearly sorted list of items. If your input is

usually nearly sorted, then you may be able to get higher

performance by using a stable sorting algorithms. However, many

stable sorting algorithms have higher complexity than unstable

ones, so the compexities involved should be carefully checked. 7

Bubble Sort (Exchange)

Bubble Sort

Bubble sort does multiple passes over an array of items, swapping

neighbouring items that are out of order as it goes.

Each pass guarantees that at least one extra element ends up in its

correct ordered location at the start of the array, so consecutive

passes shorten to work only on the unsorted part of the array until

the last pass only needs to sort the remaining two elements at the

end of the array.

1 b u b b l e s o r t (a , n) {
2 f o r (i = 1 ; i < n ; i++)

3 f o r (j = n−1 ; j >= i ; j−−)

4 i f (a [j] < a [j −1])

5 swap a [j] and a [j −1]

6 }

8

Example of a Bubble Sort run

x

5 8 3 4 6

5 8 3 4 6

5 8 3 4 6

5 3 8 4 6

3 5 8 4 6

3 5 8 4 6

3 5 8 4 6

3 5 4 8 6

3 4 5 8 6

3 4 5 8 6

3 4 5 6 8

3 4 5 6 8

3 4 5 6 8

3 4 5 6 8

9

Bubble Sort Complexity

The outer loop is iterated n − 1 times.

The inner loop is iterated n− i times, with each iteration executing

a single comparison. So the total number of comparisons is:

n−1∑
i=1

n−1∑
j=i

1 =
n−1∑
i=1

(n − i)

= (n − 1) + (n − 2) + · · ·+ 1

=
n(n − 1)

2
.

Thus best, average and worst case complexities are all O(n2)

10

Bubble Sort Stability

Consider what happens when two elements with the same value are

in the array to be sorted.

Since only neighbouring pairs of values can be swapped, and the

swap is only carried out if one is strictly less than the other, no pair

of the same values will ever be swapped. Hence bubble sort can

not change the relative order of two elements with the same value.

Hence bubble sort is stable.

11

Insertion Sort (Insertion)

Insertion Sort

Insertion sort works by taking each element of the input array and

inserting it into its correct position relative to all the elements that

have been inserted so far.

It does this by partitioning the array into a sorted part at the front

and an unsorted part at the end.

Initially the sorted part is just the first cell of the array and the

unsorted part is the rest.

In each pass it takes the first element of the unsorted part and

inserts it into its correct position in the sorted part, simultaneously

growing the sorted part and shrinking the unsorted part by one cell.

12

Example of an Insertion Sort run

1. 5 12 , 6, 3, 11, 8, 4

2. 5, 12 6 , 3, 11, 8, 4

3. 5, 6, 12, 3 , 11, 8, 4

4. 3, 5, 6, 12 11 , 8, 4

5. 3, 5, 6, 11, 12 8 , 4

6. 3, 5, 6, 8, 11, 12 4

7. 3, 4, 5, 6, 8, 11, 12

13

Insertion Sort Pseudo-Code

1 i n s e r t i o n s o r t (a , n) {
2 f o r (i = 1 ; i < n ; i++) {
3 j = i

4 t = a [j]

5 whi le (j > 0 && t < a [j −1]) {
6 a [j] = a [j −1]

7 j−−
8 }
9 a [j] = t

10 }
11 }

14

Insertion Sort Complexity

The outer loop is iterated n − 1 times

In the worst case, the inner loop is iterated 1 time for the first

outer loop iteration, 2 times for the 2nd outer iteration, etc. Thus,

in the worst case, the number of comparisons is:

n−1∑
i=1

i∑
j=1

1 =
n−1∑
i=1

i

= 1 + 2 + · · ·+ (n − 1)

=
n(n − 1)

2

In the average case, it is half that (because on average the correct

position for the insertion in each inner loop will be in the middle of

the sorted part), i.e. n(n−1)
4

Hence average and worst case complexity is O(n2)
15

Insertion Sort Stability

Consider what happens when two elements with the same value are

in the array to be sorted.

Since the value inserted in each outer loop is the first value in the

unsorted part of the array, the first occurrence of two copies of the

same value will be taken for insertion before the second.

Further, in the inner loop, we walk down from the end of the

sorted part of the array until we find the first location that is not

strictly greater than the value to be inserted before inserting there.

That means that we will not insert a later copy of a value before

an earlier copy that has already been inserted.

Hence insertion sort is stable.

16

Selection Sort (Selection)

Selection Sort

Selection sort works by selecting the smallest remaining element of

the input array and appending it at the end of all the elements

that have been inserted so far.

Just like Insertions sort, it does this by partitioning the array into a

sorted part at the front and an unsorted part at the end.

Initially the sorted part is empty and the unsorted part is the whole

input array.

In each pass it finds the smallest element of the unsorted part and

swaps it with the first element of the unsorted part of the array.

Then it moves the split position between the sorted and the

unsorted parts of the array on by one cell.

17

Example of a Selection Sort run

1. 5, 12, 6, 3 , 11, 8, 4

2. 3 12, 6, 5, 11, 8, 4

3. 3, 4 6, 5 , 11, 8, 12

4. 3, 4, 5 6 , 11, 8, 12

5. 3, 4, 5, 6 11, 8 , 12

6. 3, 4, 5, 6, 8 11 , 12

7. 3, 4, 5, 6, 8, 11 12

8. 3, 4, 5, 6, 8, 11, 12
18

Selection Sort (pseudocode)

1 s e l e c t i o n s o r t (a , n){
2 f o r (i = 0 ; i < n−1 ; i++) {
3 k = i

4 f o r (j = i +1 ; j < n ; j++)

5 i f (a [j] < a [k])

6 k = j

7 swap a [i] and a [k]

8 }
9 }

19

Selection Sort Complexity

The outer loop is iterated n − 1 times

In the worst case, the inner loop is iterated n− 1 times for the first

outer loop iteration, n − 2 times for the 2nd outer iteration, etc.

Note that this is for best, worst and average cases. Thus, the total

number of comparisons is:

n−2∑
i=0

n−1∑
j=i+1

1 =
n−2∑
i=0

(n − 1− i)

= (n − 1) + · · ·+ 2 + 1

=
n(n − 1)

2
.

Hence best, average and worst case complexity is O(n2)

20

Selection Sort Stability

Consider what happens when two elements with the same value are

in the array to be sorted.

For example, consider when the input array contains 21, 22, 1,

where the subscript indicates the order of appearance of the two

copies of the value 2.

In the first pass, we find the smallest element, in this case the 1,

and swap it with the first element in the array, the 21. This results

in 1, 22, 21. In other words, the 2 copies of 2 have changed order.

No matter how we change the condition for which element of a set

of elements of the same (smallest) value we then select, we can

easily produce counterexamples that show that the order of

elements with the same value can change.

Hence selection sort is unstable. 21

Heap Sort (Selection)

Heap Sort

A priority heap structure allows efficient selecting and removal of

the highest priority (i.e. largest value) from a collection of values.

Heap sort uses a priority heap to sort all the values by first

constructing a priority heap with the values to be sorted and then,

repetitively removing the largest value from the heap and filling it

in to the output array starting at the end of the array and working

backwards towards the start of the array.

Priority

Heap
22

Heap Sort

If we use the standard array implementation of the Binary Heap,

then every time we remove the highest priority element from the

heap, we reduce the size of the heap by one and we are therefore

using less of the array to hold the heap values. We can therefore

use the SAME array to put the sorted output values into, thus

avoiding the need to use a separate extra array. Of course, the

final sorted elements will be in index locations 1 to n of the array,

instead of 0 to n − 1:

1 h e a p S o r t (a r r a y a , i n t n) {
2 h e a p i f y (a , n)

3 f o r (j = n ; j > 1 ; j−−) {
4 swap a [1] and a [j]

5 bubbleDown (1 , a , j −1)

6 }
7 }

23

Heap Sort Complexity and Stability

Heapify is O(n). Then we have to do n bubble down operations,

each of complexity O(log n) which gives a cost of O(n log n) in

total.

Because of the reordering in the bubble down operations, this sort

is unstable

24

Merge Sort (Divide & Conquer)

Merge Sort

Idea:

1. Split the array into two halves:

2. Sort each of them recursively:

3. Merge the sorted parts:

25

Merge Sort

Idea:

1. Split the array into two halves:

2. Sort each of them recursively:

3. Merge the sorted parts:

25

Merge Sort

Idea:

1. Split the array into two halves:

2. Sort each of them recursively:

3. Merge the sorted parts:

25

Example: Merge Sort run

〈5, 4, 6, 1〉 〈2, 7, 3〉

〈5, 4〉 〈6, 1〉 〈2, 7〉 〈3〉

〈5〉 〈4〉 〈6〉 〈1〉 〈2〉 〈7〉

〈4, 5〉 〈1, 6〉 〈2, 7〉

〈1, 4, 5, 6〉 〈2, 3, 7〉

〈5, 4, 6, 1, 2, 7, 3〉

〈1, 2, 3, 4, 5, 6, 7〉

26

Example: Merge Sort run

〈5, 4, 6, 1〉 〈2, 7, 3〉

〈5, 4〉 〈6, 1〉

〈2, 7〉 〈3〉

〈5〉 〈4〉 〈6〉 〈1〉 〈2〉 〈7〉

〈4, 5〉 〈1, 6〉 〈2, 7〉

〈1, 4, 5, 6〉 〈2, 3, 7〉

〈5, 4, 6, 1, 2, 7, 3〉

〈1, 2, 3, 4, 5, 6, 7〉

26

Example: Merge Sort run

〈5, 4, 6, 1〉 〈2, 7, 3〉

〈5, 4〉 〈6, 1〉

〈2, 7〉 〈3〉

〈5〉 〈4〉

〈6〉 〈1〉 〈2〉 〈7〉

〈4, 5〉 〈1, 6〉 〈2, 7〉

〈1, 4, 5, 6〉 〈2, 3, 7〉

〈5, 4, 6, 1, 2, 7, 3〉

〈1, 2, 3, 4, 5, 6, 7〉

26

Example: Merge Sort run

〈5, 4, 6, 1〉 〈2, 7, 3〉

〈5, 4〉 〈6, 1〉

〈2, 7〉 〈3〉

〈5〉 〈4〉

〈6〉 〈1〉 〈2〉 〈7〉

〈4, 5〉

〈1, 6〉 〈2, 7〉

〈1, 4, 5, 6〉 〈2, 3, 7〉

〈5, 4, 6, 1, 2, 7, 3〉

〈1, 2, 3, 4, 5, 6, 7〉

26

Example: Merge Sort run

〈5, 4, 6, 1〉 〈2, 7, 3〉

〈5, 4〉 〈6, 1〉

〈2, 7〉 〈3〉

〈5〉 〈4〉 〈6〉 〈1〉

〈2〉 〈7〉

〈4, 5〉

〈1, 6〉 〈2, 7〉

〈1, 4, 5, 6〉 〈2, 3, 7〉

〈5, 4, 6, 1, 2, 7, 3〉

〈1, 2, 3, 4, 5, 6, 7〉

26

Example: Merge Sort run

〈5, 4, 6, 1〉 〈2, 7, 3〉

〈5, 4〉 〈6, 1〉

〈2, 7〉 〈3〉

〈5〉 〈4〉 〈6〉 〈1〉

〈2〉 〈7〉

〈4, 5〉 〈1, 6〉

〈2, 7〉

〈1, 4, 5, 6〉 〈2, 3, 7〉

〈5, 4, 6, 1, 2, 7, 3〉

〈1, 2, 3, 4, 5, 6, 7〉

26

Example: Merge Sort run

〈5, 4, 6, 1〉 〈2, 7, 3〉

〈5, 4〉 〈6, 1〉

〈2, 7〉 〈3〉

〈5〉 〈4〉 〈6〉 〈1〉

〈2〉 〈7〉

〈4, 5〉 〈1, 6〉

〈2, 7〉

〈1, 4, 5, 6〉

〈2, 3, 7〉

〈5, 4, 6, 1, 2, 7, 3〉

〈1, 2, 3, 4, 5, 6, 7〉

26

Example: Merge Sort run

〈5, 4, 6, 1〉 〈2, 7, 3〉

〈5, 4〉 〈6, 1〉 〈2, 7〉 〈3〉

〈5〉 〈4〉 〈6〉 〈1〉 〈2〉 〈7〉

〈4, 5〉 〈1, 6〉 〈2, 7〉

〈1, 4, 5, 6〉 〈2, 3, 7〉

〈5, 4, 6, 1, 2, 7, 3〉

〈1, 2, 3, 4, 5, 6, 7〉

26

Example: Merge Sort run

〈5, 4, 6, 1〉 〈2, 7, 3〉

〈5, 4〉 〈6, 1〉 〈2, 7〉 〈3〉

〈5〉 〈4〉 〈6〉 〈1〉 〈2〉 〈7〉

〈4, 5〉 〈1, 6〉 〈2, 7〉

〈1, 4, 5, 6〉 〈2, 3, 7〉

〈5, 4, 6, 1, 2, 7, 3〉

〈1, 2, 3, 4, 5, 6, 7〉

steps

1 & 2

steps 3

26

Merging two sorted arrays a[-] and b[-] efficiently

Idea: In variables i and j we store the current positions in

a[-] and b[-] , respectively (starting from i=0 and j=0).

Then:

1. Allocate a temporary array tmp[-] , for the result.

2. If a[i] <= b[j] then copy a[i] to tmp[i+j] and i++ ,

3. Otherwise, copy b[j] to tmp[i+j] and j++ .

Repeat 2./3. until i or j reaches the end of a[-] or b[-] ,

respectively, and then copy the rest from the other array.

a[-] b[-] 27

Merging two sorted arrays a[-] and b[-] efficiently

Merging two sorted arrays is the most important part of merge sort

and must be efficient. For example:

Take a = [1,6,7] and b = [3,5] . Set i=0 and j=0 , and

allocate tmp of length 5 :

1. a[0] 6 b[0] , so set tmp[0] = a[0] (= 1) and i++ .

2. a[1] > b[0] , so set tmp[1] = b[0] (= 3) and j++ .

3. a[1] > b[1] , so set tmp[2] = b[1] (= 5) and j++ .

At this point i = 1, j = 2 and the first three values stored in

tmp are [1,3,5] .

Since j is at the end of b , we are done with b and we copy the

remaining values from a into tmp . Then, tmp stores

[1,3,5,6,7] .
28

Merge Sort (pseudocode)

1 m e r g e s o r t (a , n) {
2 m e r g e s o r t r u n (a , 0 , n−1)

3 }
4

5 vo id m e r g e s o r t r u n (a , l e f t , r i g h t) {
6 i f (l e f t < r i g h t){
7 mid = (l e f t + r i g h t) d i v 2

8

9 m e r g e s o r t r u n (a , l e f t , mid)

10 m e r g e s o r t r u n (a , mid+1, r i g h t)

11

12 merge (a , l e f t , mid , r i g h t)

13 }
14 }

29

The pseudocode we present here tries to avoid some of the unnecessary

allocations of new arrays. Namely, when running recursive calls of merge

sort, we do not allocate two new arrays for the two halves, we only compute

the left -most and right -most positions of those halves, with respect

to the original array arr .

Initially we call mergesort run to sort all elements of the array, that is,

we want to sort elements on positions

0 , 1 , 2 , 3 , ..., n-1

In order to sort this, we run merge sort twice, first time for the positions

0 , 1 , 2 , 3 , ..., mid

and the second time for positions

(mid+1)+0 , (mid+1)+1 , (mid+1)+2 , ..., n-1 .

(In further recursive calls those left and right bounds are recomputed

accordingly.)

Merging (pseudocode)

1 merge (a r r a y a , i n t l e f t , i n t mid , i n t r i g h t) {
2 c r e a t e new a r r a y b o f s i z e r i g h t− l e f t +1
3 bcount = 0
4 l c o u n t = l e f t
5 r c o u n t = mid+1
6 whi le ((l c o u n t <= mid) and (r c o u n t <= r i g h t)) {
7 i f (a [l c o u n t] <= a [r c o u n t])
8 b [bcount++] = a [l c o u n t ++]
9 e l s e

10 b [bcount++] = a [r c o u n t ++]
11 }
12 i f (l c o u n t > mid)
13 whi le (r c o u n t <= r i g h t)
14 b [bcount++] = a [r c o u n t ++]
15 e l s e
16 whi le (l c o u n t <= mid)
17 b [bcount++] = a [l c o u n t ++]
18 f o r (bcount = 0 ; bcount < r i g h t− l e f t +1 ; bcount++)
19 a [l e f t +bcount] = b [bcount]
20 }

30

Time Complexity of Mergesort

Merging two arrays of lengths n1 and n2 is in O(n1 + n2)

Sizes of recursive calls:

n

n
2

n
4

...

1

...

1

n
4

...

1

...

1

n
2

n
4

...

1

...

1

n
4

...

1

...

1

Merging:

O(n
2

+ n
2

) = O(n)

O(2 · (n
4

+ n
4

)) = O(n)

O(4 · (n
8

+ n
8

)) = O(n) Each level requires

O(n) for merging.

If n = 2k , then we have k = log2 n levels =⇒ O(n log n) is the

time complexity of merge sort.
(This is the Worst/Best/Average Case complexity.) 31

Let us analyse the running time of merge sort for an array of size n and for

simplicity we assume that n = 2k . First, we run the algorithm recursively for two

halves. Putting the running time of those two recursive calls aside, after both

recursive calls finish, we merge the result in time O(n
2

+ n
2

).

Okay, so what about the recursive calls? To sort n
2

-many entries, we split them

in half and sort both n
4

-big parts independently. Again, after we finish, we merge

in time O(n
4

+ n
4

). However, this time, merging of n
2

-many entries happens twice

and, therefore, in total it runs in O(2× (n
4

+ n
4

)) = O(2× n
2

) = O(n).

Similarly, we have 4 subproblems of size n
4

, each of them is merging their sub-

problems in time O(n
8

+ n
8

). In total, all calls of merge for subproblems of size n
4

take O(4× (n
8

+ n
8

)) = O(n). ... We see that it always takes O(n) to merge

all subproblems of the same size (= those on the same level of the recursion).

Since the height of the tree is O(log n) and each level requires O(n) time for all

merging, the time complexity is O(n log n). Notice that this analysis does not

depend on the particular data, so it is the Worst, Best and Average Case.

Stability of Mergesort

The splitting phase of mergesort does not change the order of any

items.

So long as merging phase merges the left with the right in that

order and takes values from the leftmost sub-array before the

rightmost one when values are equal (as the pseudocode above

does) then different elements with the same values do not change

their relative order.

Therefore mergesort is stable.

32

Quick Sort (Divide & Conquer)

Quick Sort

1. Select an element of the array, which we call the pivot.

2. Partition the array so that the “small entries” (≤ pivot) are

on the left, then the pivot, then the “large entries” (> pivot).

3. Recursively (quick)sort the two partitions.

33

Quick Sort

1. Select an element of the array, which we call the pivot.

2. Partition the array so that the “small entries” (≤ pivot) are

on the left, then the pivot, then the “large entries” (> pivot).

3. Recursively (quick)sort the two partitions.

33

Quick Sort

1. Select an element of the array, which we call the pivot.

2. Partition the array so that the “small entries” (≤ pivot) are

on the left, then the pivot, then the “large entries” (> pivot).

3. Recursively (quick)sort the two partitions.

33

For the time being it is not important how the pivot is selected. We will

see later that there are different strategies that select the pivot and they

might affect the time complexity of quicksort.

Remark: In order for quicksort to be a stable sorting algorithm, it is useful

to allow the large entries to also be ≥ pivot.

On the other hand, it is easier to understand how quicksort works if we

require the large entries to be strictly larger than the pivot. Of course, this

is only an issue if there are duplicate values in the array.

Example: Quick Sort run

Initial pivot selection strategy: we always choose the leftmost entry.

〈
2 , 1, 3

〉 〈
5 , 7, 8, 6

〉

〈1〉 〈3〉 〈〉
〈

7 , 8, 6
〉

〈
1, 2 , 3

〉
〈6〉 〈8〉

〈
6, 7 , 8

〉
〈

5 , 6, 7, 8
〉

〈
4 , 5, 2, 7, 8, 1, 3, 6

〉

〈
1, 2, 3, 4 , 5, 6, 7, 8

〉

34

Example: Quick Sort run

Initial pivot selection strategy: we always choose the leftmost entry.

〈
2 , 1, 3

〉 〈
5 , 7, 8, 6

〉

〈1〉 〈3〉

〈〉
〈

7 , 8, 6
〉

〈
1, 2 , 3

〉
〈6〉 〈8〉

〈
6, 7 , 8

〉
〈

5 , 6, 7, 8
〉

〈
4 , 5, 2, 7, 8, 1, 3, 6

〉

〈
1, 2, 3, 4 , 5, 6, 7, 8

〉

34

Example: Quick Sort run

Initial pivot selection strategy: we always choose the leftmost entry.

〈
2 , 1, 3

〉 〈
5 , 7, 8, 6

〉

〈1〉 〈3〉

〈〉
〈

7 , 8, 6
〉

〈
1, 2 , 3

〉

〈6〉 〈8〉

〈
6, 7 , 8

〉
〈

5 , 6, 7, 8
〉

〈
4 , 5, 2, 7, 8, 1, 3, 6

〉

〈
1, 2, 3, 4 , 5, 6, 7, 8

〉

34

Example: Quick Sort run

Initial pivot selection strategy: we always choose the leftmost entry.

〈
2 , 1, 3

〉 〈
5 , 7, 8, 6

〉

〈1〉 〈3〉 〈〉
〈

7 , 8, 6
〉

〈
1, 2 , 3

〉

〈6〉 〈8〉

〈
6, 7 , 8

〉
〈

5 , 6, 7, 8
〉

〈
4 , 5, 2, 7, 8, 1, 3, 6

〉

〈
1, 2, 3, 4 , 5, 6, 7, 8

〉

34

Example: Quick Sort run

Initial pivot selection strategy: we always choose the leftmost entry.

〈
2 , 1, 3

〉 〈
5 , 7, 8, 6

〉

〈1〉 〈3〉 〈〉
〈

7 , 8, 6
〉

〈
1, 2 , 3

〉
〈6〉 〈8〉

〈
6, 7 , 8

〉

〈
5 , 6, 7, 8

〉

〈
4 , 5, 2, 7, 8, 1, 3, 6

〉

〈
1, 2, 3, 4 , 5, 6, 7, 8

〉

34

Example: Quick Sort run

Initial pivot selection strategy: we always choose the leftmost entry.

〈
2 , 1, 3

〉 〈
5 , 7, 8, 6

〉

〈1〉 〈3〉 〈〉
〈

7 , 8, 6
〉

〈
1, 2 , 3

〉
〈6〉 〈8〉

〈
6, 7 , 8

〉
〈

5 , 6, 7, 8
〉

〈
4 , 5, 2, 7, 8, 1, 3, 6

〉

〈
1, 2, 3, 4 , 5, 6, 7, 8

〉
34

Quick Sort (pseudocode)

1 vo id q u i c k s o r t (a , n){
2 q u i c k s o r t r u n (a , 0 , n−1)

3 }
4

5 q u i c k s o r t r u n (a , l e f t , r i g h t) {
6 i f (l e f t < r i g h t) {
7 p i v o t i n d e x = p a r t i t i o n (a , l e f t , r i g h t)

8 q u i c k s o r t r u n (a , l e f t , p i v o t i n d e x −1)

9 q u i c k s o r t r u n (a , p i v o t i n d e x +1, r i g h t)

10 }
11 }

Where partition rearranges the array so that

• the small entries are stored on positions

left, left+1, left+2, ..., pivot index-1 ,

• pivot is stored on position pivot index and

• the large entries are stored on

pivot index+1, pivot index+2, ..., right . 35

Partitioning array a

Idea:

1. Choose a pivot p from a .

2. Allocate two temporary arrays: tmpLE and tmpG .

3. Store all elements less than or equal to p to tmpLE .

4. Store all elements greater than p to tmpG .

5. Copy the arrays tmpLE and tmpG back to a and return the

index of p in a .

The time complexity of partitioning is O(n).

=⇒

36

Partitioning array a in-place (unstable)

1 p a r t i t i o n (a r r a y a , i n t l e f t , i n t r i g h t) {
2 p i v o t i n d e x = c h o o s e P i v o t (a , l e f t , r i g h t)

3 p i v o t = a [p i v o t i n d e x]

4 swap a [p i v o t i n d e x] and a [r i g h t]

5 l e f t m a r k = l e f t

6 r i g h t m a r k = r i g h t − 1

7 whi le (l e f t m a r k <= r i g h t m a r k) {
8 whi le (l e f t m a r k <= r i g h t m a r k and

9 a [l e f t m a r k] <= p i v o t)

10 l e f t m a r k++

11 whi le (l e f t m a r k <= r i g h t m a r k and

12 a [r i g h t m a r k] >= p i v o t)

13 r i g h t m a r k−−
14 i f (l e f t m a r k < r i g h t m a r k)

15 swap a [l e f t m a r k ++] and a [r i g h t m a r k −−]

16 }
17 swap a [l e f t m a r k] and a [r i g h t]

18 r e t u r n l e f t m a r k

19 } 37

Partitioning array a , using temporary storage (stable)

1 p a r t i t i o n (a r r a y a , i n t l e f t , i n t r i g h t) {
2 c r e a t e new a r r a y b o f s i z e r i g h t− l e f t +1

3 p i v o t i n d e x = c h o o s e P i v o t (a , l e f t , r i g h t)

4 p i v o t = a [p i v o t i n d e x]

5 acount = l e f t

6 bcount = 1

7 f o r (i = l e f t ; i <= r i g h t ; i++) {
8 i f (i == p i v o t i n d e x)

9 b [0] = a [i]

10 e l s e i f (a [i] < p i v o t | |
11 (a [i] == p i v o t && i < p i v o t i n d e x))

12 a [acount++] = a [i]

13 e l s e

14 b [bcount++] = a [i]

15 }
16 f o r (i = 0 ; i < bcount ; i++)

17 a [acount++] = b [i]

18 r e t u r n r i g h t−bcount+1

19 } 38

Time Complexity of Quicksort

Best Case: If the pivot is the median in every iteration, then the

two partitions have approximately n
2 elements.

=⇒ The time complexity is as for Merge Sort, i.e. O(n log n).

Worst Case: If the pivot is always the least element in every

iteration, then the second partition contains all elements except for

the pivot; it has n − 1 elements. In the consecutive iterations:

the second partition has n − 1, n − 2, n − 3, ..., 1 elements.

=⇒ The time complexity is O(n2).

Average Case: Depends on the strategy which chooses the

pivots! If there are ≥ 25% many small entries or ≥ 25% many

large entries in almost every iteration, then the partitioning

happens approximately log4/3 n-many times

=⇒ The time complexity is O(n log n).

39

Time Complexity of Quicksort

Best Case: If the pivot is the median in every iteration, then the

two partitions have approximately n
2 elements.

=⇒ The time complexity is as for Merge Sort, i.e. O(n log n).

Worst Case: If the pivot is always the least element in every

iteration, then the second partition contains all elements except for

the pivot; it has n − 1 elements. In the consecutive iterations:

the second partition has n − 1, n − 2, n − 3, ..., 1 elements.

=⇒ The time complexity is O(n2).

Average Case: Depends on the strategy which chooses the

pivots! If there are ≥ 25% many small entries or ≥ 25% many

large entries in almost every iteration, then the partitioning

happens approximately log4/3 n-many times

=⇒ The time complexity is O(n log n).

39

Time Complexity of Quicksort

Best Case: If the pivot is the median in every iteration, then the

two partitions have approximately n
2 elements.

=⇒ The time complexity is as for Merge Sort, i.e. O(n log n).

Worst Case: If the pivot is always the least element in every

iteration, then the second partition contains all elements except for

the pivot; it has n − 1 elements. In the consecutive iterations:

the second partition has n − 1, n − 2, n − 3, ..., 1 elements.

=⇒ The time complexity is O(n2).

Average Case: Depends on the strategy which chooses the

pivots! If there are ≥ 25% many small entries or ≥ 25% many

large entries in almost every iteration, then the partitioning

happens approximately log4/3 n-many times

=⇒ The time complexity is O(n log n). 39

Pivot-selection strategies

Choose pivot as:

1. the middle entry

(good for sorted sequences, unlike the leftmost-strategy),

2. the median of the leftmost, rightmost and middle entries,

3. a random entry (there is 50% chance for a good pivot).

Remark: In practice, usually 3. or a variant of 2. is used.

Also, for both quicksort and mergesort, when you reach a small

region that you want to sort, it’s faster to use selection sort or

other sort algorithms. The overhead of Q.S. or M.S. is big for

small inputs.

40

Strategies (1) and (2) don’t guarantee that the pivot will be such that

≥ 25% entries is small and ≥ 25% is large for every input sequence.

However, this property holds on average (= for a random sequence).

Strategy (3), although it does not guarantee that we will find a perfect

pivot every single time, we pick it often (with 50% probability) which

suffices.

Comparison of sorting algorithms

Selection

Sort

Heap Sort Merge

Sort

Quick

Sort temp

array

(stable)

Quick Sort

in-place

(unstable)

Time

Complexity:

Average C. O(n2) O(n log n) O(n log n) O(n log n) O(n log n)

Worst C. O(n2) O(n log n) O(n log n) O(n2) O(n2)

Space

Complexity:

Average C. O(1) O(1) O(n) O(n) O(log n)

Worst C. O(1) O(1) O(n) O(n) O(n)

Stability No No Yes Yes No

41

So why is quicksort used so much if its Worst Case complexity is as bad

as that of selection sort?

It is because quicksort’s constants hidden by the big-O are smaller. How-

ever, if guaranteed O(n log n) time complexity is required, it is probably

better to use merge sort. Moreover, if we are working with very restricted

memory, then it is reasonable to also consider heap sort.

Non-Comparison Sorts

Binsort

Binsort is a type of sort that is not based on comparisons between

key values but instead simply assigns records to “bins” based of

the key value of the record alone.

These bins, in Abstract Data Type terms, are Queue data

structures, which maintain the order that records are inserted into

them.

The final step of the binsort is to concatenate the queues together

in order to get a single list of records with all records of the first

bin followed by all records of the second bin, etc.

Binsort is a stable sort because values that belong in the same bin

are enqueued in the order that they appear in the input.

Binsort does one pass through the input to fill the bins, and one

pass through the bins to create the output list, so this is O(n). 42

Binsort Example

For example, with a shuffled deck of 52 playing cards you can do a

pass through the deck separating out each card into one of 13 piles

by their face value (Ace, 2, 3,. . . , Jack, Queen, King). Each pile,

or bin, would end up with 4 cards with the same face value, but

the suits (Hearts, Diamonds, Clubs, Spades) within each bin would

still be mixed up. We can now put all the piles together to make a

single pile of 52 cards, which are sorted by face value but not by

suit.

If we now do another binsort on the pile obtained from our first

binsort, but this time based on suits rather than face values, you

end up with 4 piles of 13 cards, with one pile for each suit. This

time, because of the stability of binsort, each pile WILL be sorted

by face value: since the input was sorted by face value, cards are

put into each suit pile in face value order. 43

Further Binsort Examples

Dates are suitable values to do such “multi-phase” binsorts on:

sort first by day, then by month, then by year to obtain the list of

dates in Year, Month, Day order.

A variant on binsort is bucketsort, where instead of “scattering”

records into bins based just on a value (which could be numeric or

categorical), they are scattered into buckets based on a range of

numeric values or a set of categories.

44

Radix Sort

Radix sort is a multi-phase binsort where the key sorted on in each

phase is a different, more significant base power of the integer key.

For example, in base (or radix) 10, an integer has digits for units,

10s, 100s, 1000s, etc. In a radix sort, a binsort on the units digit is

performed first, then on the 10s digit, then on the 100s digit etc.

The result final result will be that the keys are sorted first by the

most significant digit, then by the next most significant digit, . . . ,

until finally by the least significant digit. That is, they will be

sorted into normal integer order.

45

Radix Sort Example

Here we sort a set of numbers using a 3-phase binary radix sort,

i.e. the base, or radix of the sort is 2, so there are two bins used:

bin 0 and bin 1:

0

5

2

7

1

3

6

4

=

000

101

010

111

001

011

110

100

→

000

010

110

100

101

111

001

011

→

000

100

101

001

010

110

111

011

→

000

001

010

011

100

101

110

111

=

0

1

2

3

4

5

6

7

• Complexity is O(kn), where k is the number of bits in a key

• Reduce to O
(
kn
m

)
by grouping m bits together and using 2m

bins, e.g. m = 4 and use 16 bins. 46

Pigeonhole Sort

A special case is when the keys to be sorted are the numbers from

0 to n− 1. This sounds unnecessary, i.e. why not just generate the

numbers in order from 0 to n − 1?, but remember that these keys

are typically just fields in records and the requirement is to put the

records in key value order, not just the key values.

The idea here is to create an output array of size n, and iterate

through the input list directly assigning the input records to their

correct location in the output array. Clearly, this is O(n).

1 p i g e o n h o l e s o r t (a , n){
2 c r e a t e a r r a y b o f s i z e n

3 f o r (i = 0 ; i < n ; i++)

4 b [a [i]] = a [i]

5 copy a r r a y b i n t o a r r a y a

6 }
47

Pigeonhole Sort in-place

We can avoid allocating the extra array and doing the extra copy

as follows:

1 p i g e o n h o l e s o r t i n p l a c e (a , n){
2 f o r (i = 0 ; i < n ; i++)

3 whi le (a [i] != i)

4 swap a [a [i]] and a [i]

5 }

x

3 0 4 1 2

1 0 4 3 2

0 1 4 3 2

0 1 2 3 4

Every swap results in at least one key in its

correct position, and once a key is in its

correct position, it is never again swapped,

so there are at most n − 1 swaps, therefore

the sort is O(n)

48

Summary: Comparison Based Sort Properties

Sorting Strategy Worst case Average case Stable

Algorithm employed complexity complexity

Bubble Sort Exchange O(n2) O(n2) Yes

Selection Sort Selection O(n2) O(n2) No

Insertion Sort Insertion O(n2) O(n2) Yes

Heapsort Selection O(n log n) O(n log n) No

Quicksort D & C O(n2) O(n log n) Maybe

Mergesort D & C O(n log n) O(n log n) Yes

49

Summary: Empirical Sort Timings

Algorithm 128 256 512 1024 O1024 R1024 2048

Bubble Sort 54 221 881 3621 1285 5627 14497

Selection Sort 12 45 164 634 643 833 2497

Insertion Sort 15 69 276 1137 6 2200 4536

Heapsort 21 45 103 236 215 249 527

Quicksort 12 27 55 112 1131 1200 230

Quicksort2 6 12 24 57 1115 1191 134

Mergesort 18 36 88 188 166 170 409

Mergesort2 6 22 48 112 94 93 254

• Column titles show the number of items sorted

• O1024: 1024 items already in ascending order

• R1024: 1024 items already in descending order

• Quicksort2 and Mergesort2: sort switches to selection sort

during recursion once size of array drops to 16 or less.
50

Hash tables

Basic idea

Goal: We would like to be able to calculate the location of our

search target without having to actually search for it.

A hash function hash(key) computes the location from a key

Example: Storing international dialing codes in an array:

dialCode[hash("UK")] = "+44"

In practice, we will need an ADT, rather than a simple array:

dialCode.put("UK", "+44")

However, some programming languages with built-in hash ADTs,

like Python, extend the array syntax:

dialCode["UK"] = "+44"
1

Maybe you have seen the syntax dialCode["UK"] in Python, JavaScript,

PHP or other programming languages. Even though it looks like those

languages allow indexing of arrays by strings, internally it is always imple-

mented by using hash tables.

It is important that every time we compute the index of a key by a hash

function, we always get the same index.

Example: Storing students’ assignments in O(1)

In Canvas, say we store students’ submissions in a hash table:

• value = assignment submission

• key = student’s ID number

Student IDs of the form 2183201, 1526020, ... 7-digit numbers

Allocate an array submissions of size 107 and choose the

hashcode to be the identity function: hash(s) returns s.

Then, to store an assignment:

submissions[hash(s)] = assignment

This is in O(1) but VERY memory inefficient!

Even if we only need to store assignments of 500 students, we still

allocate an array of size 107

2

Example: Hash function based on the size of the array

Allocate an array arr of size 500 and compute hash(s) as

s mod 500 .

Now hash(s) is one of 0 , 1 , 2 , ... submissions.length-1 .

But this might introduce hash collisions. That is, we can have

hash(key1) == hash(key2)

for two different keys key1 and key2 .

Collisions will happen even if we double/triple the size of arr .

=⇒ We need a mechanism for dealing with hash collisions.

3

Summary

In summary, a hash table consists of

1. an array arr for storing the values,

2. a hash function hash(key) , and

3. a mechanism for dealing with collisions.

It implements (at least) the operations:
set(key, value) , delete(key) , lookupValue(key) .

NOTE: We will consider a simplified situation where key s and

value s are the same. For example, an assignment is always:

arr[hash(key)] = key .

And the operations change to: insert(key) , delete(key) , lookup(key) . 4

Whereas lookupValue(key) returns the value stored on the position

given by key , lookup(key) returns true or false based on whether

key is stored in the hash table.

The reason why we explain the simplified situation is because it is easier

to illustrate the main ideas this way. However, this simplified situation is

also often useful on its own. In Java there is even a class called HashSet

which works exactly this way.

Note: The only difference between the simplified and unsimplified situations is

that, instead of storing the key only, we need to store both the key and the value.

Two types of solutions of hash collisions

Chaining strategy

0

1

2

3

4

5

6

7

G C

D

A Y F

Entries with the same

hash(key) are stored in a

linked list.

Open Addressing strategy

C

Y

D

A

0

1

2

3

4

5

6

7

?

?

If the position is occupied, we

try different “fallback”

positions.

5

The chaining strategies store an extra data structure on each position of

the hash table. Those could be linked lists, another hash table, or even

something completely different. In the following we only consider one

chaining strategy, called direct chaining, which uses linked lists to store

the values with the same hash(code) .

The main idea behind open addressing strategies is that, in case of colli-

sions, we find a different address (from a sequence of “fallback“ addresses)

in the same array for the colliding value to be stored, that is, an address

which is currently unused, or “open”, hence the name open addressing. In

this module we consider the following two open addressing strategies:

• Linear probing

• Double hashing

Direct chaining (= a chaining strategy)

Entries: airport codes, e.g. BHX, INN, HKG, IST, ...

Table size: 10

Hash function:

• We treat the codes as a number in base 26

(A=0, B=1, ..., Z=25).

Example: ABC = 0 ∗ 262 + 1 ∗ 26 + 2 = 28

• The hashcode is computed mod 10

(to make sure that the index is 0, 1, 2, 3, ..., or 9).

Example:

hash(BHX) = 1*26*26 + 7*26 + 23 mod 10 = 1

key BHX INN HKG IST MEX PRG TPE

hash 1 9 8 5 9 8 8 6

Direct chaining

key BHX INN HKG IST MEX PRG TPE

hash 1 9 8 5 9 8 8

0

1

2

3

4

5

6

7

8

9

BHX

IST

TPE PRG HKG

MEX INN Initially: Empty lists on all

positions.

Insert: Add a new node at the

beginning of the list stored on

position hash(key) .

(If the entry is not already in the list.)

7

To insert, we always first check if the key which we are inserting is in the

linked list on position hash(key) . If it isn’t, we insert the key at the

beginning of that list.

(We are inserting without duplicates.)

To delete(key) we delete key from the linked list stored on po-

sition hash(key) , if it is there. Similarly, lookup(key) returns

true / false depending on if key is stored in the list on position

hash(key) .

Note: The choice to insert the key at the beginning of the list and not at the

end is not so important. Inserting at the beginning is more common (probably)

because, in practice, the just inserted key is more likely to be accessed soon

again, as opposed to the key at the end of the list.

Bad hash functions

key BHX INN HKG IST MEX PRG TPE

hash 2 2 2 2 2 2 2

0

1

2

3

4

5

6

7

8

9

TPE PRG MEX IST

HKG INN BHX

The time complexity of insert ,

delete and lookup here is O(n)!

A good hash function hash(key)

assigns indexes to keys uniformly. 8

We see that the hash function assigns 2 to all keys. Then, when inserting

a new key we first check if key is stored in the linked list on position

hash(key) = 2 . This requires to go through all the elements already

stored in the hash table =⇒ O(n) time complexity.

Similarly, delete and lookup are also in O(n).

To tackle this, we need to have a good hash function which uniformly

distributes the keys among positions. In other words, given a random

key , it ought to have the same probability of being stored on every

position.

Remark: Notice that whether a function is good or not also depends on the

distribution of your data/keys. (You don’t want the two most likely keys to

share the same hash key, for example.) When the distribution is not known, one

assumes that all keys are equally likely.

Time Complexity of Direct Chaining, part 1

The load factor of a hash table is the average number of entries

stored on a location:

n
T

n = the total number of stored entries

T = the size of the hash table

If we have a good hash function, a location given by hash(key)

has the expected number of entries stored there equal to n
T .

Unsuccessful lookup of key :

• key is not in the table.

• Location hash(key) stores n
T entries, on average.

• =⇒ We have to traverse them all. 9

The load factor represents how full the hash table is. Assuming we have

a good hash function, the load factor 0.25 represents 25% probability of

getting a collision.

A consequence of having a good hash function is that the linked list on

position hash(key) , for a randomly selected key , has expected length
n
T .

The word “expected” has a well-defined meaning in probability theory.

Intuitively speaking, it means that the list stored on position hash(key)

might be longer, it might be shorter, but it’s length will most likely be

approximately n
T (for a randomly selected key).

Time Complexity of Direct Chaining, part 2

Successful lookup of key :

• Location hash(key) stores k = n
T entries on average.

• On average, A linear search in a linked list of k elements takes
1
k (1 + 2 + · · ·+ k) = k(k+1)

2k = (k+1)
2 comparisons

Assume maximal load factor λ, that is, n
T ≤ λ

(For example, in Java λ = 0.75)

The average case time complexities:

• unsuccessful lookup: n
T ≤ λ comparisons =⇒ O(1)

• successful lookup: 1
2(1 + n

T) ≤ 1
2(1 + λ) comparisons ⇒ O(1)

λ is a constant number!
10

Time Complexity of Direct Chaining, part 3

The time complexity of insert(key) is the same as unsuccessful

lookup:

• First check if the key is stored in the table.

• If it is not, insert key at the beginning of the list stored on

hash(key) .

In total: n
T + 1 ≤ λ+ 1 =⇒ O(1).

The time complexity of delete(key) is the same as successful

lookup.

=⇒ The time complexities of insert , delete ,

lookup are all O(1).

11

To summarise, we made two assumptions:

1. We have a good hash function.

2. We assume a maximal load factor.

A consequence of the first assumption is that the expected length of chains

is n
T and the second one is that n

T ≤ λ, for some fixed constant number

λ.

By assuming those two conditions, we have computed that the operations

of hash tables are all in O(1).

Whether a hash function is good depends on the distribution of the data.

On the other hand, making sure that the load factor is bounded by some

λ can be done automatically. We will show how to do this later on. The

consequence of our approach will be that the constant time complexity will

be (only) amortized.

Disadvantages of “chaining” strategies

1. Typically, there are a lot of hash collisions, therefore a lot of

unused space.

2. Linked lists require a lot of allocations (allocate memory),

which is slow.

We will take a look at two open addressing strategies which

avoid those problems:

• Linear probing

• Double hashing

12

Linear probing (= an open addressing strategy)

Insertion (initial idea): If the primary position hash(key) is

occupied, search for the first available position to the right of it.

If we reach the end, we wrap around.

Example

IST BHX PRG

0 1 2 3 4 5 6 7

? ?Inserting on hash(key) = 5

We use mod to compute the “fallback” positions:

hash(key)+1 mod T , hash(key)+2 mod T , hash(key)+3 mod T , ...

13

Linear Probing: Deleting

Deletion (idea):

1. Find whether the key is stored in the table:

Starting from the primary position hash(key) , go the right, until the

key or an empty position is found.

2. If the key is stored in the table, replace it with a marker

value, called a tombstone (marked as).

Example
Deleting key = TPE such that hash(key) = 0 :

MEX INN TPE HKG PRG

0 1 2 3 4 5 6 7

? ? ? Replace with
14

Linear Probing: Searching and Inserting

Searching:
Starting from the primary position hash(key) , search for the

key to the right. We skip over all tombstones .

If we reach an empty position, then the key is not in the table.

Inserting (more accurately):
Search for the hash(key) as above but note the location of the

first tombstone we found, if any. If we find key , signal an error.

If we reach an empty position, then the key is not in the table, so

insert the key in the noted tombstone location, if any, otherwise

in the empty position found.

Remark
Every position is either empty, or it stores a tombstone or a key.

Moreover, initially, all positions are marked as empty.
15

Example: Linear probing

key A B C D E F

hash 0 4 5 6 5 4 A B C D

0 1 2 3 4 5 6 7

1. insert(E) A B C D E

0 1 2 3 4 5 6 7

2. insert(F) A F B C D E

3. delete(D) A F B C E

4. delete(E) A F B C

5. insert(E) A F B C E

(Note we checked that E is not stored by searching until position 2) 16

Time Complexity and Clustering

insert , search and delete have the time complexity O(1).

(This is much more difficult to calculate.)

However, we often see clustering:

INN MEX TPE PRG HKG

Inserting TPE

Creates a cluster

Primary clusters are clusters caused by entries with the same

hash code. Secondary clusters are caused when the collision

handling strategy causes different entries to check the same

sequence of locations when they collide.

Clusters are more likely to get bigger and bigger, even if the load

factor is small. To make clustering less likely, use double hashing. 17

Double hashing

Use primary and secondary hash functions hash1(key) and

hash2(key) , respectively.

Insertion: We try the primary position hash1(key) first and, if

it fails, we try fallback positions:

1. (hash1(key) + 1*hash2(key)) mod T

2. (hash1(key) + 2*hash2(key)) mod T

3. (hash1(key) + 3*hash2(key)) mod T

4. ... (until we find an available space)

T is the

table size

Example

PRG INN HKG MEX

0 1 2 3 4 5 6 7

??

?

If key = TPE ,

hash1(key) = 2 ,

hash2(key) = 3 :
18

Double hashing is an improvement of linear probing. The only difference

is that every key has a different sequence of “fallback” positions given

by the secondary hash function.

Except for how we calculate the fallback positions, all the operations

(insert , delete and lookup) work the same way; we use tombstones

to mark deleted keys, when looking up we skip over those tombstones etc.

Linear probing’s fallback positions are:

(hash(key) + i) mod T for i = 1, 2, 3, ...

whereas double hashing’s fallback positions are:

(hash1(key) + i*hash2(key)) mod T for i = 1, 2, 3, ...

Avoiding short cycles

We can have short cycles!

Consider inserting a key such that hash1(key) = 2 and

hash2(key) = 4 into a table of size 8:

PRG INN HKG

0 1 2 3 4 5 6 7

?

?

The table size T and hash2(key) have to be coprime!

Two solutions:

(a) T is a prime number.

(b) T = 2k and hash2(key) is always an odd number.
(preferred)

19

Maths break:

• Two numbers a and b are said to be coprime if no number, other

than 1, divides both a and b

• Prime numbers are the numbers which are divisible only by 1 and

themselves.

What to do if the table is full?

We say that a hash table is full if the load factor is more than the

maximal load factor, that is,
n

T
> λ.

Rehashing (idea): If the table becomes full after an insertion,

allocate a new table twice the size and insert all elements from

the old table into it.

Consequences for insert :

• the Worst Case time complexity is O(n) (when rehashing) but
• the amortized time complexity is O(1)!

• calculation is similar to that for dynamic arrays

(Rehashing can be used for direct chaining, linear probing, or double hashing

and always leads to constant amortized time complexities.)
20

This combines well with our extra assumption that T = 2k in order to

avoid short cycles. If we start from an empty hash table of such size (for

example, we initially have T = 23 = 8), then doubling the size always

ensures that T = 2k for some (natural) number k .

Remark: If we double the size of the hash table, we also need to change the (pri-

mary) hash function to make sure that it is good again. In practice, hash(key)

is usually computed as bigHash(key) mod T (where bigHash com-

putes a “big” hashcode).

Then, after doubling the size of our hash table we only modify hash(key) as

follows

bigHash(key) mod 2*T .

Summary

Hash tables are ADTs with an implementation consisting of an

array arr , a primary hash function hash1(key) (and possibly a

secondary hash function hash2(key))

All operations are in O(1) (amortized time) if

1. hash1 (and hash2) computes indexes uniformly,

2. we rehash whenever the table becomes full,

3. (T = 2k for some k , and hash2 gives odd numbers).

They do not offer an efficient way to obtain entries in key order

Comparison with trees
AVL Trees require keys to be comparable and the operations are in

O(log n), best, worst and average case.

Hash tables, on the other hand, require good hash functions.

Then, operations are in O(1) amortized time complexity. 21

Final thoughts

• Insert, delete and search in Direct Chaining, Linear Probing or

Double Hashing all have O(1) amortised complexity.

• Double hashing has an performance advantage because

allocate memory in chaining has a large constant cost and

clustering in linear probing is worse.

• In chaining, if the load factor drops below a minimum

threshold, we can rehash into a hash table half the size. This

is rarely done because it does not speed up performance.

• In open addressing hash tables, We keep track of the number

of tombstones in the table. If this exceeds some threshold, we

also rehash but without doubling the size. With many

tombstones, we might even halve the size of the hash table.

• As a consequence delete is also O(1) amortized time

complexity. 22

Graphs and graph algorithms

Graph Types

A graph is formed of a (finite) set of vertices/nodes and a set of

edges between them. We distinguish four types of graphs:

Unweighted Weighted

U
n

d
ir

ec
te

d
D

ir
ec

te
d

A

B

C

A

B

C

4

2

A

B

C

A

B

C

4

1

3

1

Examples

Undirected unweighted graph:

• vertices = registered people on Facebook

• edges = friendships between people (it is mutual!)

Directed unweighted graph:

• vertices = registered people on Twitter

• edges = who is following who

Undirected weighted graph:

• vertices = train stops/stations

• edges = rail lines connecting train stops with distance

Directed weighted graph:

• vertices = bank accounts

• edges = bank transfers with amounts transferred
2

Graph Concepts

• In maths, we tend to use the term vertex, in computer

science, we use both node and vertex interchangeably

• If the graph is undirected, an edge between nodes u and w

can be thought of as having two edges u → w and w → u .

• A directed graph is often called a digraph
• A graph is called simple if

1. it has no self loops, i.e. edges connected at both ends to the

same node, and

2. it has no more than one edge between any pair of nodes

• A path is a sequence of vertices v1, v2, . . . , vn such that vi

and vi+1 are connected by an edge for all 1 ≤ i ≤ n − 1.

• A cycle is a non-empty path whose first vertex is the same as

its last vertex.

• A path is simple if no vertex appears on it twice (except for a

cycle, where the first and last vertex may be the same)
3

Graph Concepts

• An undirected graph is connected if every pair of vertices has

a path connecting them.
• A directed graphs is:

• weakly connected if for every two vertices A and B there is

either a path from A to B or a path from B to A.

• strongly connected if there are paths leading both ways.

• A tree can be viewed as a simple connected graph with no

cycles and one node identified as a root

• A graph, unlike a tree, does not have a root from which there

is a unique path to each vertex, so it does not make sense to

speak of parents and children in a graph.

• Two vertices A and B connected by an edge e are called

neighbours, and e is said to be incident to A and B.

• Two edges with a vertex in common (e.g., one connecting A

and B and one connecting B and C) are said to be adjacent.
4

Graph represented as an Adjacency Matrix

Assume that graph’s vertices are numbered V = {0, 1, 2, ..., n− 1}.
Adjacency matrix G is a two-dimensional array/matrix n × n

where each cell G[v][w] contains information about the

connection from vertex v to vertex w

Unweighted graphs:

• G[v][w] = 1 if there is an edge going from v to w

• G[v][w] = 0 if there is no such edge

Weighted graphs:

• G[v][w] = weight of the edge going from v to w

• G[v][w] = ∞ if there is no such edge∗

• G[v][v] = 0 ∗

Remark: The graph is undirected if G[v][w] = G[w][v] for all

vertices v and w .

∗other values possible depending on application 5

Example: Adjacency matrix

Unweighted undirected:

0

1

2

G =

0 1 0

1 0 1

0 1 0

For example: G[2][0] = 0 and

G[2][1] = 1 .

Weighted directed:

0

1

2

4

1

3

G =

 0 ∞ ∞
4 0 1

∞ 3 0

For example: G[2][0] = infty

and G[2][1] = 3 .
6

Graph represented as Adjacency Lists

To represent a graph on vertices V = {0, 1, 2, . . . , n − 1} by

adjacency lists we have an array N of n-many linked lists (one list

for every vertex).

Unweighted:

• N[v] is the list of neighbours of v .

(w is a neighbour of v if there is an edge v → w)

Weighted:

• N[v] is the list of neighbours of v together with the weight

of the edge that connects them with v .

7

Example: adjacency lists

Unweighted undirected:

A

B

C

N[v] neighbours

A B

B A, C

C B

Weighted directed:

A

B

C

4

1

3

N[v] neighbours & weights

A

B (A, 4), (C,1)

C (B, 3)

8

We said that representing a graph by adjacency lists means that we will

have an array N of n-many linked list (where n is the number of vertices).

Then, for example, N[2] stores the address of the head of the linked list

of all neighbours of the 2 nd vertex. If we name our vertices by letters A ,

B , C , for example, we need to find a way to assign indexes of the array

N to the letters A , B , C . One way to do this is to use hash tables.

However, in the example given here, we don’t care how this is done. We

assume that we have lists of neighbours stored in N[A] , N[B] , N[C] .

In the weighted case, N[B] also stores the weights of the edges:

N[B]

A 4 C 1

But instead of drawing this we just say that N[B] stores the list

(A, 4), (C,1).

Comparison of those two methods

Set n = the number of vertices, m = the total number of edges.

Adjacency matrix Adjacency lists

Checking if there is

an edge v → w :

Reading G[v][w]

(which is in O(1))

Checking if w is in

in the list N[v]

Allocated space: n arrays of size n

= O(n × n) space

n linked lists stor-

ing m edges in total

= O(n + m) space

Traversing v ’s

neighbours:

Traversing all G[v][0] ,

G[v][1] , .., G[v][n-1] .

= O(n) time

Traversing only the

linked list N[v]

In the third case (with adjacency lists) we only traverse the actual neighbours

of v . This is better whenever the graph is sparse (= not dense), that is, if

there are relatively few edges.
9

A graph is sparse if it has few edges relative to its number of vertices, e.g.
m
n is small. For simple graphs, some authors say it is sparse if m is O(n)

or less, rather than O(n2)

An example of a sparse graph would be the graph of Facebook users with

edges representing friendships. Facebook has hundreds of millions of users

but each user has only a few hundreds of friends. In other words, every

vertex of the graph has only a few hundreds of neighbours.

From the table we see that checking whether an edge exists is much faster

for adjacency matrices than for adjacency lists. On the other hand, if

our graph is sparse, then the allocated space of adjacency lists is much

smaller than adjacency matrices and also traversing neighbours is faster

for adjacency lists than adjacency matrices.

Shortest Paths and Dijkstra’s

Algorithm

Paths and shortest paths

Recall: A path is a sequence of vertices v1, v2, . . . , vn such that vi

and vi+1 are connected by an edge for all 1 ≤ i ≤ n − 1.

A shortest path from A to B is a path for which the sum of the

weights along the path is less than or equal to the sum of the

weights along any other path from A to B. Note that there may

be multiple different shortest paths from A to B. (In unweighted

graphs, set weights to 1.)

Example
1. A→ B → E → G

2. A→ C → D → F → G

3. ...

The shortest: A→ B →
D → F → E → G

A

B

C

D

E

F

G

1

2

1

3

6

1

2

7

3

1

2

1

3

6

1

2

7

3

1

2

1

3

6

1

2

7

3

10

Paths and shortest paths

Recall: A path is a sequence of vertices v1, v2, . . . , vn such that vi

and vi+1 are connected by an edge for all 1 ≤ i ≤ n − 1.

A shortest path from A to B is a path for which the sum of the

weights along the path is less than or equal to the sum of the

weights along any other path from A to B. Note that there may

be multiple different shortest paths from A to B. (In unweighted

graphs, set weights to 1.)

Example
1. A→ B → E → G

2. A→ C → D → F → G

3. ...

The shortest: A→ B →
D → F → E → G

A

B

C

D

E

F

G

1

2

1

3

6

1

2

7

3

1

2

1

3

6

1

2

7

3

1

2

1

3

6

1

2

7

3

10

Paths and shortest paths

Recall: A path is a sequence of vertices v1, v2, . . . , vn such that vi

and vi+1 are connected by an edge for all 1 ≤ i ≤ n − 1.

A shortest path from A to B is a path for which the sum of the

weights along the path is less than or equal to the sum of the

weights along any other path from A to B. Note that there may

be multiple different shortest paths from A to B. (In unweighted

graphs, set weights to 1.)

Example
1. A→ B → E → G

2. A→ C → D → F → G

3. ...

The shortest: A→ B →
D → F → E → G

A

B

C

D

E

F

G

1

2

1

3

6

1

2

7

3

1

2

1

3

6

1

2

7

3

1

2

1

3

6

1

2

7

3

10

Dijkstra’s algorithm to find the shortest path from v to z

For each vertex w of the graph other than v , we keep track of

the following:

i. d[w] = the shortest distance from v to w so far

(Initially: ∞, except d[v] = 0)

ii. p[w] = the predecessor on the path from v

(initially: w itself, just a convention)

iii. f[w] = is computation of d[w] finished?
(initially: false)

11

The algorithm

The algorithm (idea):

1: set d[v] = 0 (i.e. start on v)

2: while there are unfinished vertices:

3: set w = the yet unfinished vertex with the smallest d[w]

4: set f[w] = true (i.e. mark w as finished)

5: for every neighbour u of w :

6: if d[w] + weight(w,u) < d[u] :

7: set d[u] = d[w] + weight(w,u) and p[u] = w

(Where weight(w,u) is the weight of the edge w → u)

12

The input of the algorithm is a graph (represented as an adjacency matrix

or adjacency lists) and two vertices v and z . The aim is to find the

shortest path from v to z .

As the algorithm runs it changes the values d[w] , p[w] and f[w] .

Initially d[w] = infinity , p[w] = w and f[w] = false for every

vertex w .

The arrays d and f obeys the following invariant:

• d[w] is the length of the shortest path from v to w when using

only the finished vertices (i.e. those w such that f[w] == true).

• If w is finished then d[w] is the actual length of the shortest path

from v to w .

After the algorithm finishes, we compute the found shortest path by using

the array p . Lastly, weight(w,u) is the weight of the edge w → u

obtained from the adjacency matrix/lists of the graph.

Example: Execution of Dijkstra’s algorithm

Shortest Path A→ F

A

B

C

D

E

F

3

1

7
5

1
2

1
6

2

3

1

A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .

13

Example: Execution of Dijkstra’s algorithm

A

0

B
∞

C
∞

D∞

E
∞

F

∞

Shortest Path A→ F

A

B

C

D

E

F

3

1

7
5

1
2

1
6

2

3

1

A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .

13

Example: Execution of Dijkstra’s algorithm

A

0

A 3

A
1

A7

E
∞

F

∞

Shortest Path A→ F

A

B

C

D

E

F

3

1

7
5

1
2

1
6

2

3

1

A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .

13

Example: Execution of Dijkstra’s algorithm

A

0

C 2

A
1

C6

C
2

F

∞

Shortest Path A→ F

A

B

C

D

E

F

3

1

7
5

1
2

1
6

2

3

1

A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .

13

Example: Execution of Dijkstra’s algorithm

A

0

C 2

A
1

C6

C
2

F

∞

Shortest Path A→ F

A

B

C

D

E

F

3

1

7
5

1
2

1
6

2

3

1

A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .

13

Example: Execution of Dijkstra’s algorithm

A

0

C 2

A
1

E5

C
2

E

8

Shortest Path A→ F

A

B

C

D

E

F

3

1

7
5

1
2

1
6

2

3

1

A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .

13

Example: Execution of Dijkstra’s algorithm

A

0

C 2

A
1

E5

C
2

D

7

Shortest Path A→ F

A

B

C

D

E

F

3

1

7
5

1
2

1
6

2

3

1

A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .

13

Example: Execution of Dijkstra’s algorithm

A

0

C 2

A
1

E5

C
2

D

7

Shortest Path A→ F

A

B

C

D

E

F

3

1

7
5

1
2

1
6

2

3

1

A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .

13

Example: Execution of Dijkstra’s algorithm

A

0

C 2

A
1

E5

C
2

D

7

Shortest Path A→ F

A

B

C

D

E

F

3

1

7
5

1
2

1
6

2

3

1

A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,D,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .
13

Every iteration of the algorithm corresponds to one row in the table and

each such row shows the content of the three arrays d[-] , p[-] and

f[-] . (Check marks denote finished vertices.)

In the graph, the two circles adjacent to a vertex mark the current state

of d[w] and p[w] . They turn blue whenever the vertex is marked as

finished.

Dijkstra’s time complexity (adjacency matrix)

n = the number of vertices, m = the total number of edges.

We do the following up to n times:

a. Mark w as finished.

b. Update every neighbour of w .

c. Find w which is unfinished and with the smallest d[w] .

Representing the graph by an adjacency matrix, means that, over

all n outer loops, it takes:

• O(n) to do step a

• O(n2) to do step b

• O(n2) to do step c by going through all vertices.

=⇒ The time complexity is O(n2). 14

Dijkstra’s time complexity (adjacency lists)

We do the following up to n-times:

a. Mark w as finished.

b. Update every neighbour of w .

c. Find w which is unfinished and

with the smallest d[w] .

With adjacency lists, executions of

step b. will (in total) update

neighbours of the 1st selected w ,

neighbours of the 2nd selected w ,

neighbours of the 3nd selected w ,

. . .

Over all iterations combined we

update m-many times ⇒ O(m)

Representing the graph by an adjacency list, means that, over all n

outer loops, it takes:

• O(n) to do step a

• O(m) to do step b

• O(n2) to do step c by going through all vertices.

=⇒ The time complexity is O(n2) (Note: m ≤ n2 in a simple graph)
15

Dijkstra’s time complexity (adjacency lists)

Speeding up step c

Use min-priority queue: The priority of u is d[u] .

• Initialise the queue by inserting all nodes into it

• Call deleteMin to find the unfinished node with smallest
d[w]

• once per iteration, i.e. up to n times in total

• Whenever d[u] changes, we update the priority of u .

=⇒ total time complexity of step c

= O(n×“cost of deleteMin” + m×“cost of update”)

• Using Binary Heap: O(n log n + m log n)

• Using Fibonacci Heap: O(n log n + m)

16

What is omitted in the analysis is the time complexity of initialising the

heap. This is usually done by heapify and its time complexity was always

O(n) for all heaps we had. Alternatively, we can do insert n-times which

will result in the time complexity O(n log n) or O(n) depending on the heap

that we are using. Either way, the initialisation will not play any role in

the total time complexity.

Dijkstra’s time complexity – comparison

Adjacency matrices
Adjacency lists

Binary Heaps Fibonacci Heaps

O(n2) O((n + m) log n) O((n log n) + m)

Min-priority queues:

• Binary heaps: both update and deleteMin are in O(log n).

• Fibonacci heaps: update is in O(1) and deleteMin is in

O(log n) (both amortized).

Remark: Dijkstra’s algorithm works only if all weights are ≥ 0.

17

Remark: If the graph is dense, that is if the number of edges, m, is

approximately n2, then using adjacency lists together with binary heaps

has the time complexity O((n + n2) log n) = O(n2 log n) which is slower

than just using adjacency matrices. This problem disappears when using

Fibonacci heaps where, for dense graphs, the time complexity becomes

O(n log n + n2) = O(n2).

On the other hand, if the graph is not dense, using adjacency lists with

Binary Heaps or Fibonacci Heaps is faster than using adjacency matrices.

Dijkstra’s algorithm (pseudocode with adjacency matrix)

1 d i j k s t r a w i t h m a t r i x (i n t [] [] G , i n t v , i n t z) {
2 n = G. l e n g t h ;

3 d = new i n t [n] ; p = new i n t [n] ; f = new boo l [n] ;

4

5 f o r (i n t w = 0 ; w < n ; w++) {
6 d [w] = i n f t y ; p [w] = w; f [w] = f a l s e ;

7 }
8 d [v] = 0 ;

9

10 w h i l e (t r u e) {
11 w = m i n un f i n i s h e d (d , f) ;

12 i f (w == −1)
13 break ;

14

15 f o r (i n t u = 0 ; u < n ; u++)

16 update (w, u , d , p) ;

17

18 f [w] = t r u e ;

19 }
20 // compute r e s u l t s i n d e s i r e d form

21 r e t u r n c ompu t e r e s u l t (v , z , G, d , p) ;

22 } 18

1 i n t m i n u n f i n i s h e d (i n t [] d , b o o l [] f) {
2 i n t min = i n f t y ;

3 i n t i d x = −1;

4

5 f o r (i n t i =0; i < d . l e n g t h ; i ++) {
6 i f ((not f [i]) && d [i] < min) {
7 i d x = i ;

8 min = d [i]

9 }
10 }
11

12 r e t u r n i d x ;

13 }

1 vo id update (w, u , G, d , p) {
2 i f (d [w] + G [w] [u] < d [u]) {
3 d [u] = d [w] + G [w] [u] ;

4 p [u] = w;

5 }
6 }

19

Dijkstra’s algorithm (pseudocode with adjacency lists)

1 d i j k s t r a w i t h l i s t s (L i s t<Edge> [] N, i n t v , i n t z) {
2 n = G. l e n g t h ;

3 d = new i n t [n] ; p = new i n t [n] ;

4 Q = new MinPr i o r i t yQueue () ;

5

6 f o r (i n t w = 0 ; w < n ; w++) {
7 d [w] = i n f t y ; p [w] = w;

8 Q. add (w, d [w]) ;

9 }
10 d [v] = 0 ;

11 Q. update (v , 0) ;

12

13 w h i l e (Q. notEmpty ()) {
14 w = Q. de l e t eMin ()

15

16 f o r (Edge e : N[w]) { // i t e r a t e ove r edges to ne i ghbou r s

17 u = e . t a r g e t ;

18 i f (d [w] + e . we ight < d [u]) { // shou ld we update ?

19 d [u] = d [w] + e . we ight ;

20 p [u] = w;

21 Q. update (u , d [u]) ;

22 }
23 }
24 }
25 r e t u r n c ompu t e r e s u l t (v , z , G, d , p) ;

26 }

1 c l a s s Edge {
2 // t a r g e t node

3 i n t t a r g e t ;

4

5 i n t we ight ;

6 }

20

The initialisation happens on lines 6–9.

Lines 10–11 make sure that the first selected w will be v .

We use the class Edge to store neighbours together with the weight of

the edge that connects them. For example, if the vertex A has neighbours

B, C and D with the edge A → B of weight 3, A → C of weight 1, and

A → D of weight 8, then we will have that the linked list N[v] stores

Edge(B, 3) , Edge(C, 1) and Edge(D, 8) .

Minimal Spanning Trees and

Jarńık-Prim’s Algorithm

Minimal spanning tree

Assumption: Consider only undirected and connected graphs!

A spanning tree is a minimal possible selection of edges that

connects all vertices. (That is, a spanning tree does not contain any cycles.)

Minimum spanning tree is a spanning tree such that the sum of

weights of its edges is the minimal such.

Example

A B

C D

3

2

1

4
1

Spanning tree.

A B

C D

3

2

1

4
1

Not a spanning tree.

A is not connected.

A B

C D

3

2

1

4
1

Not a spanning tree.

Any of the edges CB,

CD, BD could be re-

moved.

A B

C D

3

2

1

4
1

Minimum

spanning tree!

21

Example: Execution of Jarńık-Prim algorithm

Idea: Iteratively extend the tree with an edge which has the

smallest weight and which connects a yet unconnected node.

Example

A

B

C

D E

1

3

2

2

4 5

4

Start from

any node,

e.g. B.

A

B

C

D E

1

3

2

2

4 5

4
A

B

C

D E

1

3

2

2

4 5

4

A

B

C

D E

1

3

2

2

4 5

4
The minimal spanning

tree consists of edges:

AB, BC, AE, ED.

22

Jarńık-Prim algorithm for finding the minimal spanning tree

For each vertex w of the graph, we keep track of the following:

i. d[w] = the current distance from the tree (initially: ∞)

ii. p[w] = the vertex which connects to the tree (initially: w)

iii. f[w] = has w been added to the tree? (initially: false)

The algorithm (idea):

1: set d[0] = 0 (vertex 0 could be replaced by any other vertex)

2: while there are unfinished vertices:

3: set w = the yet unfinished vertex with the smallest d[w]

4: set f[w] = true (i.e. mark w as finished)

5: for every neighbour u of w :

6: if weight(w,u) < d[u] :

7: set d[u] = weight(w,u) and p[u] = w

(Where weight(w,u) is the weight of the edge w → u)
23

Jarńık-Prim’s algorithm works similarly to Dijkstra’s algorithm. The differences

are marked by red. Altough the principle is similar, the interpretation of the

execution and the result is different. The main idea of Jarńık-Prim is that we

are growing a minimal spanning tree iteratively

The following is an invariant for Jarńık-Prim:

1. The vertices marked as finished are connected/added to the tree.

2. For those vertices which are not connected yet, d[w] denotes the

smallest weight of an edge that connects w to the tree.

3. p[w] denotes the vertex of the tree such that the edge between w and

p[w] is the edge with weight d[w] .

In steps 5-7, we reduce the weights (from ∞) of the nodes that connect to

last added finished node, so that they can be considered for adding in the next

iteration.

After the algorithm finishes, i.e. all vertices are marked finished, we can read out

the spanning tree from the array p[-] . To obtain the minimum spanning tree,

for every vertex w (except for w == 0), add the edge w — p[w] .

Jarńık-Prim’s time complexity

The time complexity is the same as for Dijkstra’s algorithm!

Adjacency matrices
Adjacency lists

Binary Heaps Fibonacci Heaps

O(n2) O((n + m) log n) O((n log n) + m)

Remark: Unlike Dijkstra’s algorithm, Jarńık-Prim’s algorithm would also work

for graphs with edges that have negative weights.

24

Minimal Spanning Forests and

Kruskal’s Algorithm

Example: Execution of Kruskal’s algorithm

Idea: Starting with a forest where every node in the graph is a

separate tree, greedily add edges with minimum weights such that

each edge is between different trees.

Example

A

B

C

D E

1

3

2

2

4 5

4

5 trees

A

B

C

D E

1

3

2

2

4 5

4

4 trees

A

B

C

D E

1

3

2

2

4 5

4

3 trees

A

B

C

D E

1

3

2

2

4 5

4

2 trees

A

B

C

D E

1

3

2

2

4 5

4

1 tree

The minimal spanning

tree consists of edges:

AB, BC, AE, DE.

25

• A Forest is a set of trees

• If the graph is connected then this creates a minimal spanning

tree. Otherwise it creates a minimal spanning forest: a set of

minimal spanning trees, one for each connected component of

the graph

• The algorithm is greedy edge-based because it always chooses

the best (i.e. minimal) edge to add at each step

• It finishes when no more edges can be added

• Note: unless the graph is connected, this is NOT the same as

finishing when there is only one tree

• Good performance is dependent on having an efficient way to

1. Discover if an edge is between nodes in the same tree

2. If an edge is between 2 different trees, which 2 trees these are

For this purpose, we can use a Union-Find data structure

26

Union-Find

The Union-Find ADT has 3 operations:

• makeSet(x): Make a new set containing the element x

• find(x): Find the set that x is an element of. It returns a

particular element of the set that is used to identify the set

• union(x,y): merge the two sets that contain elements x and

y. This replaces the two pre-existing sets containing x and y

by a single new set which contains the union of the two sets

In Kruskal: each tree is represented by the set of nodes in the tree:

• makeSet(n) is called on each node of the graph at the start

• To test if an edge (u,v) is between nodes in the same or

different trees, call find(u) and find(v) and compare their

results.

• When an edge (u,v) is added, merge(find(u),find(v)) is

called to merge the two trees joined by the edge 27

Union-Find Implementation

There are pointer based implementations, but we will use a simple

array based implementation, where we assume that the graph

nodes are numbered 0, 1, . . . , n − 1.

Sets will be represented by trees, where a parent array, indexed by

the node number, identifies the parent of each node in the set, and

the root of the tree is the set representative that identifies the set.

The root of each tree has itself as its own parent

To find the set that a node is in, we recursively follow the chain of

parents up to the root of the tree

To merge two sets, you find the roots of the two trees and set one

to have the other as its parent

A good explanation of this structure can be found at:

https://cp-algorithms.com/data_structures/disjoint_

set_union.html. The code in these slides is based on that.
28

https://cp-algorithms.com/data_structures/disjoint_set_union.html
https://cp-algorithms.com/data_structures/disjoint_set_union.html

Union-Find Näıve Implementation

1 vo id makeSet (i n t v) {
2 p a r e n t [v] = v ;

3 }
4

5 i n t f i n d (i n t v) {
6 i f (v == p a r e n t [v])

7 r e t u r n v ;

8 r e t u r n f i n d (p a r e n t [v]) ;

9 }
10

11 vo id un ion (i n t a , i n t b) {
12 a = f i n d (a) ;

13 b = f i n d (b) ;

14 i f (a != b)

15 p a r e n t [b] = a ;

16 }

29

Näıve Union-Find Problem 1

Unions can end up making very deep chains, i.e. the trees that

represent sets can end up very deep and narrow, or even linear.

This makes find(x) require a nearly linear search up a long chain

to find the root.

This can be fixed by changing find(x) so that, on return from the

recursive calls to find the root, it sets the parent of all nodes on

the path just traversed to be the root, thus reducing the find(x)

cost for all future calls on any of those nodes

30

Näıve Union-Find Problem 2

The previous code for union(u, v) just makes the second tree be

a child of the root of the first tree. If the second tree is deeper

than the first, than this makes the resulting tree deeper still, again

reducing performance of find(x)

Here we just need to choose the deeper tree to be the one that we

add the shallower tree to. Actually, it works out that you can

alternatively choose to make the smaller tree the child of the

deeper one, and in practice you get the same improved performance

In either case, you need an extra array to record either (an

approximation to) the rank (level) of the tree rooted at each node,

or the size of the subtree rooted at each node.

One subtlety is that it is not necessary to maintain the depth/size

of the subtree at every node, just that of the root nodes.
31

Improved Union-Find (based on size)

1 v o i d makeSet (i n t v) {
2 pa r en t [v] = v ;

3 s i z e [v] = 1 ;

4 }
5

6 i n t f i n d (i n t v) {
7 i f (v == pa r en t [v])

8 r e t u r n v ;

9 r e t u r n pa r en t [v] = f i n d (pa r en t [v]) ;

10 }
11

12 v o i d un ion (i n t a , i n t b) {
13 a = f i n d (a) ;

14 b = f i n d (b) ;

15 i f (a != b) {
16 i f (s i z e [a] < s i z e [b])

17 swap (a , b) ;

18 pa r en t [b] = a ;

19 s i z e [a] += s i z e [b]

20 }
21 } 32

The improved algorthm that is based on size does not need to do anything

extra in the find(x) method as even the updates done there to shorten

the paths from a node to its root still leaves the node in the same tree and

hence does not change the size of the tree.

Improved Union-Find (based on rank)

1 v o i d makeSet (i n t v) {
2 pa r en t [v] = v ;

3 rank [v] = 0 ;

4 }
5

6 i n t f i n d (i n t v) {
7 i f (v == pa r en t [v])

8 r e t u r n v ;

9 r e t u r n pa r en t [v] = f i n d (pa r en t [v]) ;

10 }
11

12 v o i d un ion (i n t a , i n t b) {
13 a = f i n d (a) ;

14 b = f i n d (b) ;

15 i f (a != b) {
16 i f (rank [a] < rank [b])

17 swap (a , b) ;

18 pa r en t [b] = a ;

19 i f (rank [a] == rank [b])

20 rank [a]++

21 }
22 }

33

The improved alorithm that is based on rank can not efficiently reduce the

rank of the root correctly during a call to find(x) that reduces path lengths

because that would require paths of from all leaves to the root and not

just the one that has been traversed.

However, it is sufficient to use the heuristic of tracking an upperbound of

the depth, where no change to the rank is made during a call to find(x).

Union-Find performance

Without the two optimisations, the trees involved can have height

O(n), so that find(x) and union(x, y) both have O(n)

complexity

With both the above optimisations the amortised (over many

operations) complexity of each operation will be Θ(α(n))

α(n) is the reverse Ackermann function which is extremely slow

growing and will not exceed 4 for any realistic value of n.

Hence the amortised upperbound complexity for all operations is

effectively O(1)

34

Kruskal’s Algorithm

Now that we have an efficient Union-Find ADT, we can use it in

Kruskal’s algorithm:

1 l e t r e s u l t be a new empty l i s t o f edges

2 f o r each node n i n G

3 makeSet (n)

4 l e t E be a l i s t o f edges i n G s o r t e d by i n c r e a s i n g w e i g h t s

5 f o r each edge e = (u , v) i n E i n o r d e r

6 {
7 i f (f i n d (u) != f i n d (v))

8 {
9 r e s u l t . add (e)

10 un ion (f i n d (u) , f i n d (v))

11 }
12 }
13 r e t u r n r e s u l t

35

Kruskal’s Algorithm Complexity

This algorithm requires sorting the graph edges by weight, which is

O(e log e), where e is the number of edges.

Then it does a linear search through the edges, during which it

carries out only operations of O(1). This contributes O(e)

Hence its final complexity is O(e log e + e) = O(e log e)

e is at most n2 where n is the number of nodes in the graph.

So O(e log e) = O(e log n2) = O(2e log n) = O(e log n)

36

Kruskal’s Algorithm vs Jarńık-Prim algorithm

If the graph is sparse, i.e. e ≈ n, then

• Fib Adj List Jarńık-Prim: O(n log n + n) = O(n log n)

• Adj Matrix Jarńık-Prim: O(n2)

• Kruskal: O(n log n)

If the graph is dense, i.e. e ≈ n2, then

• Fib Adj List Jarńık-Prim: O(n log n + n2) = O(n2)

• Adj Matrix Jarńık-Prim: O(n2)

• Kruskal: O(n2 log n)

Finally, note that Kruskal’s algorithm computes a spanning forest,

if the graph is not connected, or a spanning tree if it is connected,

while Jarńık-Prim can only calculate a spanning tree on a

connected graph.
37

