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Question 1 Clustering

Suppose we have five observations, x(), x®, x(3 x*) and x(®), for which we compute the
following dissimilarity matrix

XD x@ @ X
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D= x® 0 045 025 [,
x® 0 0.9
x(®) 0

(a) Based on the given dissimilarity matrix, hierarchically cluster the observations using
complete linkage. Sketch the dendrogram, clearly illustrating the height at which

each cluster fusion occurs. [10 marks]
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(b) Assume that a clustering algorithm produces the following two clusters: C; =
(xM x@) and C, = (x®,x* x®)). For each of the observations in cluster Cy,
compute the Silhouette coefficient using the information from the dissimilarity ma-
trix. Comment on the suitability of their assignment to cluster C;.

Note: The Silhouette coefficient of an observation x is defined as:

b(x) — a(x)
max{ b(x), a(x)}"

SC(x) =

where a(x) is the average dissimilarity of x with respect to other observations in
its cluster, and b(x) is the minimum average dissimilarity of x with respect to all

clusters to which it does not belong. [10 marks]
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Question 2 Supervised Learning

(a) The following pseudo-code represents one iteration through the training set for
gradient descent applied to univariate linear regression.

Shay

1 cost = O;
2 w0 =0;
3 wl =0;

4 for j=1 to size(trainingSet) do

f= w0 + wl*x(j);

cost = cost + (y(j) — f)?;

wl = w0 - ax*(f —y());

wl =wl-ax*(f—y())=*x(),

W ~N o o

Assume that the value of the learning rate, a is 1.

Give the numerical values of ‘cost’, ‘wQ’, and ‘wl’' at the end of the execution of
this pseudo-code for the following training set: {(—3, —1),(1,1),(2,5)}. Show all

your working.

1)

o) ok =0

W =Q V‘\‘O

(3,30

¢<= O0+0(-3) =0

k= O +(CO-0)F = |

w0:= 0 - 1(0-(N) = -y

wi: 0- 1(o-GN)(3)=13

(L,

¢= st L) =5

cek= \x (1~ = 2

w2z == \(’l‘\): =1

wiz2st - | (2)() =S 2

ok = A wQs - A wiz2
(%,

¢/ 3oRr ()32

wit: 2e(S-2)t <\

wo= -2-1(2-5) < |

wl s a-\(l‘s)('Z): 8
ozt = |l wO = | v\ =R

@0 ~N ;AW N -

[10 marks]

cost = 0;
w0 = 0;
wl =0;

for j=1 to size(trainingSet) do
f = w0 + wl*x(j);
cost = cost + (y(j) — f)?;
w0 = w0 - ax* (f — y())):
wl =wl-a=*(f—y(y))*x();



(b) Suppose that you want to use a k-Nearest Neighbours classification, but the distance
metric is not explicitly specified to you. Instead, you are given a “black box" where
you input a set of points x(),x(?, . x(™ and a new point x, and the black box

outputs the nearest neighbour of x and its corresponding class label.

Can you construct a k-Nearest Neighbour classification algorithm based on this
black box alone? The suggested algorithm should work for any given value of k €
{1,2, ..., N}. If so, describe your algorithm. If not, explain why not?  [10 marks]
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Question 3 Optimisation

(a) Give one strength and one weakness of Hill Climbing. Justify your answer.  [10 marks]
+V( J -V
— I T — ——

- no heuristics needed - gets stuck in local min/max or

plateaus

- greedy algorithm
- not complete (e.g. asymptote)

- less computing power
- can gef stuck in infinite/loopy paths

-easier to implement in code
- only looks at immediafe neighbours

- lower time complexity
since greedy compared to smth

like simulafed annealing

- low space complexity
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(b) Consider the following optimisation problem and algorithm design to solve it:

Optimisation Problem

A builder has N possible clients. Each client i € {1,..., N} would like the builder to
undertake a job that takes h; hours to complete. The builder wishes to decide which
clients to accept over the next 30 days so as to maximise their income while ensuring
that they work no more than 7.5 hours per day. This problem can be mathematically
formulated as follows:

maximise  f(x)
N

subject to  g(x) = %5 (Z x,-h,-) -75<0
=1

where x is a vector of size N, and Vi € {1, ..., N}, x; = 0 if the builder does not accept
job i and x; = 1 otherwise; and f(x) is a function that calculates the income.

Simulated Annealing Algorithm Design

Representation: a direct representation of the design variable x. In other words, a
vector x of size N, where Vi € {1,..., N}, x; = 0 if the builder does not accept job
i and x; = 1 otherwise.

Algorithm 1: Initialisation Procedure.

Input: Number of possible clients N.
Output: Candidate solution x.
1 X = new vector of size N;
for i=1 to N do
L x; = value picked uniformly at random from {0, 1};

w N

4 return x

Algorithm 2: Neighbourhood Operator.

Input: Current solution x; number of possible clients N.
Output: Neighbour x'.

x' = copy of x;
i = value picked uniformly at random from {1, ..., N},
x'=1-x;

if g(x’) > 0 then

oW N

L x=0 apeosile R inperil <> ingesSible
6 return x’ infees lL ¢ KFQ&SZUQ, ('C‘\Y ( l"e
™y feasible~ ..

Are the representation, initialisation and neighbourhood operators correctly designed
(i.e., suitable) for this problem? Assume that we wish to deal with the constraints of
this problem based on the design of the algorithm's operators. Justify your answer
by explaining either why all three operators are suitable, or what is wrong.

Note:
e The problem formulation correctly reflects the intended problem, i.e., you do
not need to check whether the problem formulation itself is correct.

e You do not need to consider how efficient the design of the operators is, just
whether or not it is a correct design for the problem.

e |t is acceptable for the neighbourhood operator to sometimes generate a neigh-
bour that is the same as the current solution.

[10 marks]
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function SIMULATED- ANNEALING( problem, schedule) retums a solution state
current < problem INITIAL
fort=1to e do
T «schedule(r)
if 7 = 0 then return current
next + a randomly sclected successor of current
AE ¢ VALUE(current) — VALUE(next)
if AE > O then current < next
else current < next only with probability ¢3£/7



Question 4 Search

(a) Consider a problem with two possible actions: a and b. The cost of ais 2 and the
cost of b is 1. The shallowest goal node can be at any level of the tree and the
problem solution may involve a sequence of these actions.

Is breadth-first search optimal to solve this problem, given this cost function? Justify
your answer.

[10 marks]

No - it can find a short path (in terms of number of actions taken) but will not necessarily
find one with the lowest cost.
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(b) An agent must traverse a maze in order to find and collect a treasure. This task
can be formulated as a search problem as in the following:

Initial state: the agent is in Al.

Goal test: the agent is in E5 (automatically collects the treasure).

Actions: move(n,n’) moves the agent from state n to a state n' that is to the
left of, or the right of, or above or below state n.

Transition model: see figure below. States depicted in black, e.g., A2, are
considered obstacles and cannot be traversed by the agent.

e Path cost: each action has cost 1.

Generate the A* tree until the goal node is found.

Initial State Goal State

The heuristic to be used is the following:

<)
h(n) = dm(n, ngoar) = Z lpi — ai

=1

1

where dy(n, ngo) represents the Manhattan distance between node n and the goal
node ngo,. When comparing the first coordinate of each state, assume the following
values for each of the possible letters in the grid: A=1, B =2, C =3, D =4
and E = 5. Order of expansion: if f(n) produces the same lowest value for two
nodes, expand the nodes in alphanumerical order (e.g., A2 expanded before B1).
Additionally, if g(n) also produces the same lowest value for two nodes, keep the the
node that has been added last into the frontier. Recall that the evaluation function
f(n) = g(n) + h(n) is the sum of the cost to reach node n and the heuristic calcu-
lated at node n.

Write down the following:

e Search tree produced by A*, indicating the f(n), g(n) and h(n) values of each
node n; which nodes are in the frontier when the algorithm terminates; and
which nodes have been pruned as a result of the above instructions.

e The solution retrieved by A* and its cost.

e The sequence of nodes visited by A* in the order they are visited. Note: you
can identify a node through its state, e.g., Al or B1.

[10 marks]
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